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To know another language is to have a second soul.
(Charlemagne, 747/748-814)



Who are we?

> Lecturer:  Prof. Dr. Janis Voigtlander
Room LF 259 (currently)

Area: Formal Methods, Programming Languages

» Assistants: Dr. Tobias Hecking (hecking@collide.info)
M.Sc. Séren Werneburg (werneburg@. . .)

» Tutor: Viet Hung Dinh



Who are you?

To my knowledge:

1. Students in Bachelor Progr. “Angewandte Informatik”

2. Students in Bachelor Progr. “Computer Engineering (ISE)”



Some lectures you have presumably attended

Angewandte Informatik:
» Grundlegende Programmiertechniken
» Fortgeschrittene Programmiertechniken

» maybe, Softwaretechnik

Computer Engineering (ISE):
» Fundamentals of Programming

» maybe, Object-oriented Programming or some of the above



This lecture

Weekly slot:
> Wednesday, 12:15-13:45, in LB 134
> 15 times

» Warning: | may sometimes arrive in a hurry.

Slides:
» ... will be made available after each lecture.
» ... will differ somewhat in style.

http://moodle.collide.info/


http://moodle.collide.info/

The exercises

Groups:
» Mon, 16:15-17:45, LE 105 (English)
» Tue, 10:15-11:45, LE 120 (German)
» Thu, 10:15-11:45, LC 137 (German)
» Fri, 08:15-09:45, LE 120 (German)

Starting next week, 24th Aprill

Some adjustments will be made for the free days/holidays.

http://moodle.collide.info/


http://moodle.collide.info/

Role of the exercises

There is no mandatory attendance or grading of solutions.
But to be successful in the course, doing the exercises is important!

In particular, resist the temptation of not doing programming tasks
on your own, and to completion.

And do go to the exercise sessions to benefit from help and
discussion there.

Material in the course cannot be learned by heart. It needs practice.



Eventually, the exam

There will be a written exam, from which the course grade is
derived. We do not know the date yet.

Registration will be via the exam office.



Consequences of the change of lecturer

| am a different lecturer, with a different style.

The exam will be about the course as taught this term.

The course will have somewhat more emphasis on programming.
There will be less emphasis on object-orientation.

But the course assistants will provide a good degree of continuity!



Introduction



Many high-level programming languages exist

History of Programming Languages O'REILLY

(©2004 O'Reilly Verlag GmbH & Co. KG



Many high-level programming languages exist
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Many high-level programming languages exist
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Another perspective

1960

1065 |
1970 \
[
1w |
_—
Cen D |
//

1995

From ,,American Scientist”: The Semicolon Wars _
(©2006 Brian Hayes



http://preview.tinyurl.com/language-influences
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Normalized Comparison

This is a chart showing combined results from all data sets, listed individually below.
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Survey at begin of a course a few years back (2013)

"Lieblingsprogrammiersprache"
12

10

OIIII..I---

C++ Java Haskell Python  Perl Lisp Scala

Mennungen
(s3] [es]

=

a1

Summer Term 2017 Programming Paradigms



Survey at begin of a course a few years back (2013)
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Studierende

Survey at begin of a course a few years back (2013)
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Studierende

Survey at begin of a course a few years back (2013)
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Certainly not:
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What, then, separates programming languages?

Some relevant distinctions:

>

>

syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)
verbosity vs. succinctness (e.g., COBOL vs. Haskell)
compiled vs. interpreted (e.g., C vs. Perl)

domain-specific vs. general purpose (e.g., SQL vs. Java)
sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
typed vs. untyped (e.g., Haskell vs. Prolog)

dynamic vs. static (e.g., Ruby vs. ML)

declarative vs. imperative (e.g., Prolog vs. C)

object-oriented vs. 777



And, yet, there are common principles.

Approaches to the specification of languages

» ... describing syntax.

» ... describing semantics.
Implementation strategies.

Language concepts:

» variables and bindings
> type constructs

» control structures and abstractions

Paradigms that span a whole class of languages.



A rough plan of the lecture

v

A look at specifying syntax of programming languages.

v

A look at specifying semantics of imperative programming
languages.

» Functional programming using Haskell.

» Evaluation of functional programs.

» Typing concepts like inference, genericity, polymorphism.
» Logic programming using Prolog.

» Comparisons of concepts like variables, statements vs.
expressions, etc. in the different languages.

» Potentially, outlook to other paradigms, functional-logic, or
influence of functional on object-oriented, ...



