Programming Paradigms
1st Lecture
Prof. Janis Voigtlander

University of Duisburg-Essen

Summer Term 2017

To know another language is to have a second soul.
(Charlemagne, 747/748-814)

Who are we?

> Lecturer: Prof. Dr. Janis Voigtlander
Room LF 259 (currently)

Area: Formal Methods, Programming Languages

» Assistants: Dr. Tobias Hecking (hecking@collide.info)
M.Sc. Séren Werneburg (werneburg@. . .)

» Tutor: Viet Hung Dinh

Who are you?

To my knowledge:

1. Students in Bachelor Progr. “Angewandte Informatik”

2. Students in Bachelor Progr. “Computer Engineering (ISE)”

Some lectures you have presumably attended

Angewandte Informatik:
» Grundlegende Programmiertechniken
» Fortgeschrittene Programmiertechniken

» maybe, Softwaretechnik

Computer Engineering (ISE):
» Fundamentals of Programming

» maybe, Object-oriented Programming or some of the above

This lecture

Weekly slot:
> Wednesday, 12:15-13:45, in LB 134
> 15 times

» Warning: | may sometimes arrive in a hurry.

Slides:
» ... will be made available after each lecture.
» ... will differ somewhat in style.

http://moodle.collide.info/

http://moodle.collide.info/

The exercises

Groups:
» Mon, 16:15-17:45, LE 105 (English)
» Tue, 10:15-11:45, LE 120 (German)
» Thu, 10:15-11:45, LC 137 (German)
» Fri, 08:15-09:45, LE 120 (German)

Starting next week, 24th Aprill

Some adjustments will be made for the free days/holidays.

http://moodle.collide.info/

http://moodle.collide.info/

Role of the exercises

There is no mandatory attendance or grading of solutions.
But to be successful in the course, doing the exercises is important!

In particular, resist the temptation of not doing programming tasks
on your own, and to completion.

And do go to the exercise sessions to benefit from help and
discussion there.

Material in the course cannot be learned by heart. It needs practice.

Eventually, the exam

There will be a written exam, from which the course grade is
derived. We do not know the date yet.

Registration will be via the exam office.

Consequences of the change of lecturer

| am a different lecturer, with a different style.

The exam will be about the course as taught this term.

The course will have somewhat more emphasis on programming.
There will be less emphasis on object-orientation.

But the course assistants will provide a good degree of continuity!

Introduction

Many high-level programming languages exist

History of Programming Languages O'REILLY

(©2004 O'Reilly Verlag GmbH & Co. KG

Many high-level programming languages exist

1954 1960

FORTRAN s FORTRAN | FORTRAN 11 FORTRAN Ill FORTRAN IV,
Nov. 1954 0ct. 1956 1957 end-1958 1962
APL
1960
B-0 Flow-Matic COBOL COBOL 61 COBOL 61
1957 1958 1959 1961 Extended

1962

(©2004 O'Reilly Verlag GmbH & Co. KG

Many high-level programming languages exist

—-

PostSt
00 Forth
1067
Oberon 000102 s
1087 1991
Obect Logo
086
o TOTK
1968 ena 1568
oot
A
1008
J
1550
MUMPS (RIS
1066
Modula 3 .
sge
aBC, .
1987 -
Python
Togy | —
Borland Pascal
Object
(COBOL 85 OSI/ANSI
1085
Ada IS0
1067
Object Pascal » NetRexx
1985 1991 -
ANSI C 1s0c
(89 (€30)
1089 e 15,199

(©2004 O'Reilly Verlag GmbH & Co. KG

Another perspective

1960

1065 |
1970 \
[
1w |
_—
Cen D |
//

1995

From ,,American Scientist”: The Semicolon Wars _
(©2006 Brian Hayes

http://preview.tinyurl.com/language-influences

Smaltalk

JavaScript

Ruby
eSimula

Objective-C
e cLu
dava
Crr
s0beron

Ada
eModula-3
#Modula-2

Object Pascal

ALGOL68

@~
@ AusoL,

@ALGOL 60
C L visual Basic

Fortran
‘Speedcoding

PLA

Common Lisp

Scheme

Erlang

Scala

Haskell

http://preview.tinyurl.com/language-influences

http://preview.tinyurl.com/popular-languages

Normalized Comparison

This is a chart showing combined results from all data sets, listed individually below.

lo]

Java T ;]
PHP
JavaScript]
C++
python
Shell

Ruby
Objective C
c#
Assembly]
s
Per [
AsPfE]
D 1
Visual Basic[F
Delphi[&1
Scala |51
Actionscript &
ColdFusion |~
Lua |
Ada =
Pascal |5
Haskell |
Scheme|1
Cobolf1
Lisp|i
Clojurefi
Erlang
Fortran [}
Tdfi
ocaml
Forth |
Smalltalk]
Synergy

Rexx
Brainfuck|

Lasso
OpenEdge ABL|
SMX

WebDNA|
ActiveVFP

http://preview.tinyurl.com/popular-languages

Survey at begin of a course a few years back (2013)

"Lieblingsprogrammiersprache"
12

10

OIIII..I---

C++ Java Haskell Python Perl Lisp Scala

Mennungen
(s3] [es]

=

a1

Summer Term 2017 Programming Paradigms

Survey at begin of a course a few years back (2013)

Hauptprogrammiersprache
12

10

= o [es]

Mennungen

a1

. IIIII-__

Java JavaScript Perl PHP
C C++ Python Haskell Scala Shell

Summer Term 2017 Programming Paradigms

Studierende

Survey at begin of a course a few years back (2013)

Programmiererfahrung

Jahre

[T R . B =) B B o)

Summer Term 2017 Programming Paradigms

Studierende

Survey at begin of a course a few years back (2013)

Vorkenntnisse in Haskell oder Prolog
25

20
15

10

keine nur in Haskell nur in Prolog in Haskell + Prolog

0

Summer Term 2017 Programming Paradigms

Certainly not:

High-level
language
2

<

High-leve
language

1
]
Low-level

(machine)
language

I

High-level
language
4

N

_

So, can one language do “more” than others?

High-level
language
3

High-level
language
5

What, then, separates programming languages?

Some relevant distinctions:

>

>

syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)
verbosity vs. succinctness (e.g., COBOL vs. Haskell)
compiled vs. interpreted (e.g., C vs. Perl)

domain-specific vs. general purpose (e.g., SQL vs. Java)
sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
typed vs. untyped (e.g., Haskell vs. Prolog)

dynamic vs. static (e.g., Ruby vs. ML)

declarative vs. imperative (e.g., Prolog vs. C)

object-oriented vs. 777

And, yet, there are common principles.

Approaches to the specification of languages

» ... describing syntax.

» ... describing semantics.
Implementation strategies.

Language concepts:

» variables and bindings
> type constructs

» control structures and abstractions

Paradigms that span a whole class of languages.

A rough plan of the lecture

v

A look at specifying syntax of programming languages.

v

A look at specifying semantics of imperative programming
languages.

» Functional programming using Haskell.

» Evaluation of functional programs.

» Typing concepts like inference, genericity, polymorphism.
» Logic programming using Prolog.

» Comparisons of concepts like variables, statements vs.
expressions, etc. in the different languages.

» Potentially, outlook to other paradigms, functional-logic, or
influence of functional on object-oriented, ...

