Programming Paradigms
2nd Lecture
Prof. Janis Voigtlander

University of Duisburg-Essen

Summer Term 2017

Wadler's Law of Language Design:

In any language design, the total time spent discussing a feature in
this list is proportional to two raised to the power of its position.

0. Semantics

1. Syntax

2. Lexical syntax
3

. Lexical syntax of comments
Philip Wadler, 1992

(designer of Haskell, Java Generics, Links)

Describing syntax

We will discuss syntax description here:

» ... as a safeguard against ambiguities.

» ... as a basis for implementation (compilers etc., not much in
this lecture) and general semantics/verification (next topic).

We will do it in a relatively pragmatic way, without foundational
concepts as in the lecture “Automaten und Formale Sprachen”.

Describing syntax

Part of a C program:
int fib(int n) {

int x=1, y=1, i, z;
if (n>=2)
for (i=1; i<n; i=i+1) { z=x; x=y; y=z+y; }

return y; }

Relevant questions:
» From which “building blocks” is a program assembled?
» By which rules are these systematically combined?

» How can we formally describe (and yet intuitively understand)
all that?

» How can a compiler, given such a description, determine
whether a program is legal at all?

Expressed more pragmatically:

We need a way of systematically distinguishing appropriate C
pieces like this:

int fib(int n) {

int x=1, y=1, i, z;
if (n>=2)
for (i=1; i<n; i=i+1) { z=x; x=y; y=z+y; }

return y; }

from “arbitrary” character sequences like this:

int fib(int n) {
int x=1, y=1, i, z;
if (n>=2; i=i+1)
for (i=1; i<n) { z=x; x=y; y=z+y; }
return y; }

Clarifying a few notions — Definitions

Alphabet:

Word:

> *

Concatenation:

Language:

Meta language:

Object language:

a non-empty, finite set ¥;
elements are called symbols
a finite sequence of symbols from ¥
» empty word: sequence of length 0; notation: ¢
set of all words (over alphabet ¥)
> cEeY”
» if we X*and o € X, then wo € ©*
» no further words in &*
operation that puts two words together
subset of X*

language for describing another language;
usually over different alphabets

language described by another language

Clarifying a

Alphabet

Word:

> *

Concatenation:

Language:

Meta language:

few notions — Examples

- X ={a,b,c}

abcca

ab - cca = abcca
{a"bc" | n > 0}

77

{e,a, b, c,aa,ab, ac, ba, bb, bc, ca, cb,

}

Set notation as meta language

> It seems reasonable to employ the usual set notation from
mathematics.

» Works without problems for finite languages:
> 0. {}
> {e}

» {b, abc, aabcc, aaabccc}
» Still works well for certain infinite languages:
» {a"bc" | n> 0}, where 8" = a---a
—
nXx
» {(ab)"c™b"ck | n,m >0,k > 1},
where (ab)" is defined by n-fold concatenation

» But already problematic for examples like the language of all
“well-bracketed expressions” over ¥ = {[,] }:

> e (1O TOT OO0 TO00 U0 T T -3

Formal description of syntax

Formal language theory provides different methods:
> finite automata
» formal grammars

» syntax diagrams

A simple example:

Ident Letter

Syntax diagrams

General build-up:

» Ovals:

O O S O

» Rectangles:

» Connections (with arrows):
» direct lines
» branchings
» join points

> Nno crossings

Syntax diagrams

In a system of syntax diagrams:

» Every syntax diagram has a unique name, exactly one start
point and exactly one end point.

» Every rectangle is labeled with the name of a syntax diagram.
» Every oval is labeled with a symbol (of the object language).

» Every rectangle/oval has exactly one entry and exactly one
exit.

Ident Letter

5

Syntax diagrams — Example

The previously problematic language of “well-bracketed expressions”

{e 100 T TI00 TONT T -} is now described as:

Dyck

Dyck [+ Dyck

Intuition: In every non-empty well-bracketed expression, for the
(necessarily existing) opening bracket at the beginning,
there is (exactly) one matching closing bracket:

> either at the very end; then between them there is
also a well-bracketed expression;

» or somewhere in the middle; then up to that point
there is a well-bracketed expression, and the same
holds for the whole rest.

Syntax diagrams — Execution

Algorithm for generating words:

1. Put a unique mark (called return address) on exit of each rectangle.

N

. Start with an initially empty stack.

©

Begin at the entry of the start diagram
(needs to be given in description).
4. Follow the connections along a legal path
(not in opposite direction of arrows etc.).
> If exit of a syntax diagram reached, continue with 5.
» If oval reached, record inscribed symbol, and continue with 4.
» If rectangle reached (inscribed with a syntax diagram name):
4.1 put copy of its return address onto the stack, then
4.2 continue with 4., at entry of the syntax diagram named.

o

» If stack not empty:
5.1 take return address adr from top of stack, then
5.2 continue with 4., at corresponding place in the system.
» If stack empty (and necessarily have reached the exit of the
start diagram), generation is finished.

Syntax diagrams — Execution example

Start diagram: S

S A
A ! A 2
1A] (-A—®
a

word stack Recording a protocol:
cc 21 » On stack, return addresses (recall: uniquely
cca assigned to rectangles in the system).
ccaa 221 R q 4 and X
ccaaa 21 > be;:or curre.:nt word an stacd.content
ccaaab 1 efore entering a new syntax diagram.
ccaaabb — > Record current word and stack content

ccaaabb — after exiting a syntax diagram.

Execution of syntax diagrams — Another example

Start diagram: Dyck
word stack
2
12
212
12
312
12
2

Dyck

——————— ()
—_—

w |

Observations: (]

» This is certainly not the shortest [] —
execution for []. [—

» Word and stack content alone do
not uniquely determine the current
state of execution.

o’

Subtlety: generation vs. recognition

Start diagram: S

{AF— (2 AJ+(b)
o ok

» some generated words: a, ca, cca, aab, ccca, caab, cccca,
ccaab, aaabb, ccccca, cccaab, caaabb, cccccca, ccccaab, . ..

» overall generated language in set notation:
{c"a™1p™ | n,m >0}

» different, but related problem: decide/recognize whether a
given word can be generated by a given SD system

Subtlety: generation vs. recognition

Start diagram: S

S A

1 2
[)E g @ A—®
a

For caab, two failing executions, but also one successful:

word stack word stack word stack
c 1 c 1 c 1
ca - ca 21 ca 21
caa 221 caa 1

caab —

caab —

Manipulating syntax diagrams for easier recognition

S A

{AF— (A ®)
P B

C@J

» Recognize the same language {c"a™*1b™ | n,m > 0}.
> The second system enables deterministic recognition with
always only one symbol “look-ahead”.

“Analogously”

word stack
e 2
[12
[212
[12
(
[
(

Dyck

312
12
2

(] 3

Dyck 4 [l -

0 =0 :
word stack

[1

It can be proved that both diagrams
specify the same language.

Syntax of C, top-down

Global view of simplified C programs

Program

T @O0

Import
® ©
Block

D (3)
U \J/
VariableDeclaration

Declaring variables

VariableDeclaration

Ident

()L Famber

(e
S

Important, but not expressible via syntax diagrams:
» no double declarations of same identifier

» no use of undeclared variables in program

Actually doing stuff

#include <stdio.h>

int main()

{ int n,s,i;
scanf("%d".&n);
s=0;
i=1;
while (i<=n)

{ s=s+ixi; }
i=i+1;
} Statement

printf("%d",s);
return 0; J

Subset of all possible statements

Statement

—
"~ WhileStatement [——]
"~ DoWhileStatement [
"~ ForStatement |———]
“~ ReturnStatement |—

Input and output, variable assighment, conditionals

10Call
TED-O-CD-O-O-E-0r

« ’ Expression o
Assignment

IfStatement

()0 Esprsson |-())-{ Satement

@ Statement

Optional “else” (remember when we talk Haskell)

Expression m Statement }—»

VS.

Expression W Statement @

yes VS. yes

| Stmt. 1 | | Stmt. 2 |
b

O— O

» Of course, statements could be blocks, hence contain several
further statements (including another if).

Nested conditionals

if (Expr.1) {if (Expr.2) Stmt.1}
else {
Stmt. 2
if (Expr.3) Stmt.3
else Stmt. 4

Without the first {...}-pair,
would have been difficult to
interpret it this way!

Loops

WhileStatement

« Expression w Statement ’—»

o]

» For simplicity, no consideration of other loops here.

Backus-Naur Form (BNF)

An alternative to syntax diagrams

Instead of a graphical notation . ..

Dyck

Dyck [+ Dyck

. a textual notation:
(Dyck) == ‘[' (Dyck) ‘1" | (Dyck) (Dyck) |

Ingredients of such a production:
» a non-terminal, like (Dyck), on the left-hand side;
» several alternatives, separated by |, on the right-hand side,

» made up of non-terminals and/or terminals, like ‘['.

An alternative to syntax diagrams

Interpretation by repeatedly applying productions from left to
right, each time choosing any of the available alternatives.

For the example,
(Dyck) := '[' (Dyck) ‘1" | (Dyck) (Dyck) |

one possible derivation:
P or another (of many):

(Dyck) — (Dyck) (Dyck)

- T (Dyck> (Dyck)]

[(Dyck) 1 (Dyck) ‘7" = {Dyck)
0T T (Dyek) T = [(Dyck) ']
ST = L0 b=

The two mechanisms (SDs and BNF) are equally powerful!

A more involved example

Need to express the loop indirectly:
(S) == (Cs) (A)
(Cs) == "c' (Cs) |

While translation from SD to BNF is again very direct for (A):
(A) == 'a' (A)'b'|'a

Yet another example

VariableDeclaration

Ident -Q—»

O
I
(VariableDeclaration) ::= ‘int’ (ltems) *;’
(Items) = (ltem) *," (Items) | (Item)
(Item) ::= (ldent) | (ldent) ‘=" (Number)
(Ident) =
(Number) =

Derivation trees (also: parse trees)
Recording derivations in nested rather than linearized fashion:
(VariableDeclaration)

e

‘int’ (Items) ’
e
(Item) ’ (Items)
| |
(Ident) (Item)
| e
X' (Ident) = (Number)
| |
'y ‘0

. provides structure for compilers etc., and for verification ...

The importance of grammar design

Consider the following two BNFs:

(Expression) ::= (Term) '+' (Expression) | (Term)
(Term) = (Factor) ‘*' (Term) | (Factor)

(Factor) = (Number) | (Ident) | '(" (Expression) *)’
vs.

(Expression) ::= (Factor) '*' (Expression) | (Factor)
(Factor) = (Term) '+ (Factor) | (Term)

(Term) = (Number) | (Ident) | '(' (Expression) ')’

The importance of grammar design

Both allow derivation of the concrete expression 2 + 3 * 5:
(Expression) — (Term) '+' (Expression)
—2 (Factor) '+' (Term)
—2 (Number) ‘+' (Factor) ‘*' (Term)
=02+ 3 %5 =2+ 3 x5
and
(Expression) — (Factor) '*' (Expression)
—2 (Term) ‘+' (Factor) ‘*' (Factor)
—3 (Number) ‘+' (Term) ‘s’ (Term)
—° 2" '+ "3 %" B’ =2+ 3 %5

What could there be to not like about either of these?

The importance of grammar design

Let's take a look at the derivation trees, on the one hand:

(Expression)

(Term) + (Expression)
(Fac‘tor> (Term
[

)
<Nur?ber> (Factor>/ l \(Term>
2 <Nun‘1ber> (Fat,"tor)

‘3 <Nurr‘7ber)
.

The importance of grammar design

. and on the other:

(Expression)
P
(Factor) ‘s’ (Expression)
PN |
(Term) ‘+' (Factor) ({F. ac_“tor)
<Nun‘1ber> (Te‘rm> { Te‘rm)
I
! g

=

Which one should we prefer, semantically?

