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Wadler’s Law of Language Design:

In any language design, the total time spent discussing a feature in
this list is proportional to two raised to the power of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments
Philip Wadler, 1992

(designer of Haskell, Java Generics, Links)



Describing syntax

We will discuss syntax description here:

I . . . as a safeguard against ambiguities.

I . . . as a basis for implementation (compilers etc., not much in
this lecture) and general semantics/verification (next topic).

We will do it in a relatively pragmatic way, without foundational
concepts as in the lecture “Automaten und Formale Sprachen”.



Describing syntax

Part of a C program:

i n t f i b ( i n t n ) {
i n t x=1, y=1, i , z ;
i f ( n>=2)

f o r ( i =1; i<n ; i=i +1) { z=x ; x=y ; y=z+y ; }
return y ; }

Relevant questions:

I From which “building blocks” is a program assembled?

I By which rules are these systematically combined?

I How can we formally describe (and yet intuitively understand)
all that?

I How can a compiler, given such a description, determine
whether a program is legal at all?



Expressed more pragmatically:

We need a way of systematically distinguishing appropriate C
pieces like this:

i n t f i b ( i n t n ) {
i n t x=1, y=1, i , z ;
i f ( n>=2)

f o r ( i =1; i<n ; i=i +1) { z=x ; x=y ; y=z+y ; }
return y ; }

from “arbitrary” character sequences like this:

i n t f i b ( i n t n ) {
i n t x=1, y=1, i , z ;
i f ( n>=2; i=i +1)

f o r ( i =1; i<n ) { z=x ; x=y ; y=z+y ; }
return y ; }



Clarifying a few notions – Definitions

Alphabet: a non-empty, finite set Σ;
elements are called symbols

Word: a finite sequence of symbols from Σ

I empty word: sequence of length 0; notation: ε

Σ∗: set of all words (over alphabet Σ)

I ε ∈ Σ∗

I if w ∈ Σ∗ and σ ∈ Σ, then wσ ∈ Σ∗

I no further words in Σ∗

Concatenation: operation that puts two words together

Language: subset of Σ∗

Meta language: language for describing another language;
usually over different alphabets

Object language: language described by another language



Clarifying a few notions – Examples

Alphabet: Σ = {a, b, c}

a non-empty, finite set Σ;
elements are called symbols

Word: abcca

a finite sequence of symbols from Σ

I empty word: sequence of length 0; notation: ε

Σ∗: {ε, a, b, c , aa, ab, ac, ba, bb, bc, ca, cb, . . . }

set of all words (over alphabet Σ)

I ε ∈ Σ∗

I if w ∈ Σ∗ and σ ∈ Σ, then wσ ∈ Σ∗

I no further words in Σ∗

Concatenation: ab · cca = abcca

operation that puts two words together

Language: {anbcn | n ≥ 0}

subset of Σ∗

Meta language: ???

language for describing another language;
usually over different alphabets

Object language: language described by another language



Set notation as meta language

I It seems reasonable to employ the usual set notation from
mathematics.

I Works without problems for finite languages:

I ∅, {}
I {ε}
I {b, abc, aabcc, aaabccc}

I Still works well for certain infinite languages:

I {anbcn | n ≥ 0}, where an = a · · · a︸ ︷︷ ︸
n×

I {(ab)ncmbnck | n,m ≥ 0, k ≥ 1},
where (ab)n is defined by n-fold concatenation

I But already problematic for examples like the language of all
“well-bracketed expressions” over Σ = { [ , ] }:

I {ε, [ ] , [ ][ ] , [ [ ] ] , [ ][ ][ ] , [ [ ] ][ ] , [ ][ [ ] ] , [ [ [ ] ] ] , . . .}



Formal description of syntax

Formal language theory provides different methods:

I finite automata

I formal grammars

I syntax diagrams

A simple example:

Ident

- Letter �
� Letter ��

� Digit �

�



�


-

Letter

- a
���
�

�- b
���
�- c
���


�




-



Syntax diagrams

General build-up:

I Ovals:

- a
���
- - b

���
- - c
���
-

I Rectangles:

- Letter - - Digit -

I Connections (with arrows):

I direct lines

I branchings

I join points

I no crossings



Syntax diagrams

In a system of syntax diagrams:

I Every syntax diagram has a unique name, exactly one start
point and exactly one end point.

I Every rectangle is labeled with the name of a syntax diagram.

I Every oval is labeled with a symbol (of the object language).

I Every rectangle/oval has exactly one entry and exactly one
exit.

Ident

- Letter �
� Letter ��

� Digit �

�



�


-

Letter

- a
���
�

�- b
���
�- c
���


�




-



Syntax diagrams – Example

The previously problematic language of “well-bracketed expressions”
{ε, [ ] , [ ][ ] , [ [ ] ] , [ ][ ][ ] , [ [ ] ][ ] , [ ][ [ ] ] , . . .} is now described as:

Dyck

- [
���
- Dyck - ]

���
�
�- Dyck - Dyck

�
�




-

Intuition: In every non-empty well-bracketed expression, for the
(necessarily existing) opening bracket at the beginning,
there is (exactly) one matching closing bracket:

I either at the very end; then between them there is
also a well-bracketed expression;

I or somewhere in the middle; then up to that point
there is a well-bracketed expression, and the same
holds for the whole rest.



Syntax diagrams – Execution

Algorithm for generating words:

1. Put a unique mark (called return address) on exit of each rectangle.

2. Start with an initially empty stack.

3. Begin at the entry of the start diagram
(needs to be given in description).

4. Follow the connections along a legal path
(not in opposite direction of arrows etc.).

I If exit of a syntax diagram reached, continue with 5.
I If oval reached, record inscribed symbol, and continue with 4.
I If rectangle reached (inscribed with a syntax diagram name):

4.1 put copy of its return address onto the stack, then
4.2 continue with 4., at entry of the syntax diagram named.

5. I If stack not empty:

5.1 take return address adr from top of stack, then
5.2 continue with 4., at corresponding place in the system.

I If stack empty (and necessarily have reached the exit of the
start diagram), generation is finished.



Syntax diagrams – Execution example

Start diagram: S

S

�
� c

���
�
�


- A

1 -

A

- a
���
- A

2- b
���
�

�- a
���


�


-

word stack
cc 1
cca 21
ccaa 221
ccaaa 21
ccaaab 1
ccaaabb −
ccaaabb −

Recording a protocol:

I On stack, return addresses (recall: uniquely
assigned to rectangles in the system).

I Record current word and stack content
before entering a new syntax diagram.

I Record current word and stack content
after exiting a syntax diagram.



Execution of syntax diagrams – Another example

Start diagram: Dyck

Dyck

- [
���
- Dyck

1
- ]
���
�

�- Dyck
2- Dyck

3

�
�




-

word stack
ε 2
[ 12
[ 212
[ 12
[ 312
[ 12
[ 2
[ ] −
[ ] 3
[ ] −
[ ] −

Observations:
I This is certainly not the shortest

execution for [ ].

I Word and stack content alone do
not uniquely determine the current
state of execution.



Subtlety: generation vs. recognition

Start diagram: S

S

�
� c

���
�
�


- A -

A

- a
���
- A - b

���
�
�- a

���

�


-

I some generated words: a, ca, cca, aab, ccca, caab, cccca,
ccaab, aaabb, ccccca, cccaab, caaabb, cccccca, ccccaab, . . .

I overall generated language in set notation:
{cnam+1bm | n,m ≥ 0}

I different, but related problem: decide/recognize whether a
given word can be generated by a given SD system



Subtlety: generation vs. recognition

Start diagram: S

S

�
� c

���
�
�


- A

1 -

A

- a
���
- A

2- b
���
�

�- a
���


�


-

For caab, two failing executions, but also one successful:

word stack
c 1
ca −

word stack
c 1
ca 21
caa 221

word stack
c 1
ca 21
caa 1
caab −
caab −

Die ersten beiden Fälle entsprechen
sogenannter

”
abnormaler Terminierung“.



Manipulating syntax diagrams for easier recognition

S

�
� c

���
�
�


- A -

A

- a
���
- A - b

���
�
�- a

���

�


-

⇓

S

�
� c

���
�
�


- a
���
- A -

A

- a
���
- A - b

���
�
�

�


-

I Recognize the same language {cnam+1bm | n,m ≥ 0}.
I The second system enables deterministic recognition with

always only one symbol “look-ahead”.



“Analogously”

Dyck

- [
���
- Dyck

1- ]
���
�

�- Dyck
2- Dyck

3

�
�




-

⇓Dyck

- [
���
- Dyck

1- ]
���
- Dyck

2�
�

�


-

word stack
ε 2
[ 12
[ 212
[ 12
[ 312
[ 12
[ 2
[ ] −
[ ] 3
[ ] −
[ ] −

word stack
[ 1
[ −
[ ] 2
[ ] −
[ ] −

It can be proved that both diagrams
specify the same language.



Syntax of C, top-down



Global view of simplified C programs

Program

- Import�
�

�


- int
�� �
- main

�� �
- (
���
- )

���
- Block -

Import

- #include
�� �
- <

���
- stdio.h
�� �
- >

���
-

Block

- {
���
�

� VariableDeclaration �

�



�
� Statement �

�


- }
���
-



Declaring variables

VariableDeclaration

- int
�� �
- Ident �

�- =
���
- Number

�



�
� ,

���
�
�


- ;
���
-

Important, but not expressible via syntax diagrams:

I no double declarations of same identifier

I no use of undeclared variables in program



Actually doing stuff

#inc lude <s t d i o . h>

i n t main ( )
{ i n t n , s , i ;

s c a n f ("%d" ,&n ) ;
s =0;
i =1;
whi le ( i<=n )
{ s=s+i ∗ i ;

i=i +1;
}

p r i n t f ("%d" , s ) ;
return 0 ;

}

} �
� Statement �

�


-



Subset of all possible statements

Statement

- IOCall - ;
���
�

�- Assignment - ;
���
�- IfStatement

�- WhileStatement

�- DoWhileStatement

�- ForStatement

�- Block

�- ReturnStatement

�















-



Input and output, variable assignment, conditionals

IOCall

- scanf
�� �
- (

���
- “%d”
�� �
- ,

���
- &
���
- Ident - )

���
�
�- printf

�� �
- (
���
- “%d”

�� �
- ,
���
- Expression - )

���

�


-

Assignment

- Ident - =
���
- Expression -

IfStatement

- if
���
- (

���
- Expression - )
���
- Statement �


�
� - else

�� �
- Statement�
�

�


-



Optional “else” (remember when we talk Haskell)

- if
���
- (

���
- Expression - )
���
- Statement -

vs.

- if
���
- (

���
- Expression - )
���
- Statement - else

�� �
- Statement -

Expr. ?

Stmt.

yes

no

vs.

Expr. ?

Stmt. 1 Stmt. 2

yes

no

I Of course, statements could be blocks, hence contain several
further statements (including another if ).



Nested conditionals

i f (Expr. 1) { i f (Expr. 2) Stmt. 1}
e l s e {

Stmt. 2
i f (Expr. 3) Stmt. 3
e l s e Stmt. 4

}

Without the first {. . .}-pair,
would have been difficult to
interpret it this way!

Expr. 1 ?

Expr. 2 ?

Stmt. 1

Stmt. 2

Expr. 3 ?

Stmt. 3 Stmt. 4

yes

yes

no

no

yes

no

Andererseits gänzlich unmöglich, sowas umzusetzen:

Ein: n

x , y = 1, 1

n < 2 ? Aus: y

x , y = y , x + y

n = n − 1
ja

nein



Loops

WhileStatement

- while
�� �
- (

���
- Expression - )
���
- Statement -

Expr. ?

Stmt.

no

yes

I For simplicity, no consideration of other loops here.



Backus-Naur Form (BNF)



An alternative to syntax diagrams

Instead of a graphical notation . . .

Dyck

- [
���
- Dyck - ]

���
�
�- Dyck - Dyck

�
�




-

. . . a textual notation:

〈Dyck〉 ::= ‘[’ 〈Dyck〉 ‘]’ | 〈Dyck〉 〈Dyck〉 |

Ingredients of such a production:

I a non-terminal, like 〈Dyck〉, on the left-hand side;

I several alternatives, separated by |, on the right-hand side,

I made up of non-terminals and/or terminals, like ‘[’.



An alternative to syntax diagrams

Interpretation by repeatedly applying productions from left to
right, each time choosing any of the available alternatives.

For the example,

〈Dyck〉 ::= ‘[’ 〈Dyck〉 ‘]’ | 〈Dyck〉 〈Dyck〉 |

one possible derivation:

〈Dyck〉 → ‘[’ 〈Dyck〉 ‘]’
→ ‘[’ 〈Dyck〉 〈Dyck〉 ‘]’
→ ‘[’ ‘[’ 〈Dyck〉 ‘]’ 〈Dyck〉 ‘]’
→ ‘[’ ‘[’ ‘]’ 〈Dyck〉 ‘]’
→ ‘[’ ‘[’ ‘]’ ‘]’ = [[]]

or another (of many):

〈Dyck〉 → 〈Dyck〉 〈Dyck〉
→ 〈Dyck〉
→ ‘[’ 〈Dyck〉 ‘]’
→ ‘[’ ‘]’ = []

The two mechanisms (SDs and BNF) are equally powerful!



A more involved example

S

�
� c

���
�
�


- A -

A

- a
���
- A - b

���
�
�- a

���

�


-

Need to express the loop indirectly:

〈S〉 ::= 〈Cs〉 〈A〉

〈Cs〉 ::= ‘c’ 〈Cs〉 |

While translation from SD to BNF is again very direct for 〈A〉:
〈A〉 ::= ‘a’ 〈A〉 ‘b’ | ‘a’



Yet another example

VariableDeclaration

- int
�� �
- Ident �

�- =
���
- Number

�



�
� ,

���
�
�


- ;
���
-

⇓

〈VariableDeclaration〉 ::= ‘int’ 〈Items〉 ‘;’

〈Items〉 ::= 〈Item〉 ‘,’ 〈Items〉 | 〈Item〉

〈Item〉 ::= 〈Ident〉 | 〈Ident〉 ‘=’ 〈Number〉

〈Ident〉 ::= ...

〈Number〉 ::= ...



Derivation trees (also: parse trees)

Recording derivations in nested rather than linearized fashion:

〈VariableDeclaration〉

‘int’ 〈Items〉

〈Item〉

〈Ident〉

‘x’

‘,’ 〈Items〉

〈Item〉

〈Ident〉

‘y’

‘=’ 〈Number〉

‘0’

‘;’

. . . provides structure for compilers etc., and for verification . . .



The importance of grammar design

Consider the following two BNFs:

〈Expression〉 ::= 〈Term〉 ‘+’ 〈Expression〉 | 〈Term〉

〈Term〉 ::= 〈Factor〉 ‘*’ 〈Term〉 | 〈Factor〉

〈Factor〉 ::= 〈Number〉 | 〈Ident〉 | ‘(’ 〈Expression〉 ‘)’

vs.

〈Expression〉 ::= 〈Factor〉 ‘*’ 〈Expression〉 | 〈Factor〉

〈Factor〉 ::= 〈Term〉 ‘+’ 〈Factor〉 | 〈Term〉

〈Term〉 ::= 〈Number〉 | 〈Ident〉 | ‘(’ 〈Expression〉 ‘)’



The importance of grammar design

Both allow derivation of the concrete expression 2 + 3 * 5:

〈Expression〉 → 〈Term〉 ‘+’ 〈Expression〉
→2 〈Factor〉 ‘+’ 〈Term〉
→2 〈Number〉 ‘+’ 〈Factor〉 ‘*’ 〈Term〉
→6 ‘2’ ‘+’ ‘3’ ‘*’ ‘5’ = 2 + 3 * 5

and

〈Expression〉 → 〈Factor〉 ‘*’ 〈Expression〉
→2 〈Term〉 ‘+’ 〈Factor〉 ‘*’ 〈Factor〉
→3 〈Number〉 ‘+’ 〈Term〉 ‘*’ 〈Term〉
→5 ‘2’ ‘+’ ‘3’ ‘*’ ‘5’ = 2 + 3 * 5

What could there be to not like about either of these?



The importance of grammar design

Let’s take a look at the derivation trees, on the one hand:

〈Expression〉

〈Term〉

〈Factor〉

〈Number〉

‘2’

‘+’ 〈Expression〉

〈Term〉

〈Factor〉

〈Number〉

‘3’

‘*’ 〈Term〉

〈Factor〉

〈Number〉

‘5’



The importance of grammar design

. . . and on the other:

〈Expression〉

〈Factor〉

〈Term〉

〈Number〉

‘2’

‘+’ 〈Factor〉

〈Term〉

〈Number〉

‘3’

‘*’ 〈Expression〉

〈Factor〉

〈Term〉

〈Number〉

‘5’

Which one should we prefer, semantically?


