
Programming Paradigms
3rd Lecture

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Important questions . . .

. . . which a syntax description (alone) cannot answer:

I What is the formal meaning of a (concrete) program?

I When are two programs equivalent?

I How can we prove what a program does?

I Can one determine the behavior of a program from that of its
syntactic building blocks?

I Is it even possible to separately define the formal meaning of
individual language constructs?

I When is a program correct?

What does one actually mean by “correct”?

Partial correctness:

I Provision of input/output specifications:

I Which inputs are needed?
I What requirements do these inputs have to satisfy so

that the program works?
I Which outputs, with which properties, are produced?

I Every produced output satisfies the above output
specification, if the inputs did satisfy the input specification.

I But it is not necessarily guaranteed that an output is always
produced at all.

Total correctness: partial correctness + successful termination

Hoare triples as verification formulas

We use “Hoare triples” as input/output specifications, notation:

{P } C {Q } or

{P }
C
{Q }

where:

I C is a program piece (syntax), and

I P and Q are assertions about the state space of the (whole)
program: logic expressions, containing program variables.

Beispiele: (not necessarily true propositions!)

I { x==0 } x=x+1; { x==1 }
I { (x==0) && (y==z) } x=1; x=2∗x; { (x>1) && ((y+z)!=3) }
I { x==0 } x=x+1; { x==0 }

Hoare triples as verification formulas

Hoare triple {P } C {Q } to be read as:

I If in some program (memory) state the assertion P holds,

I one then executes the program piece C and it terminates,

I then in the state afterwards the assertion Q definitely holds.

(For concrete P, C, Q what is said above can be true or not.)

Notes:

I This describes only partial correctness.

I The validity of Q after execution of C is really relevant for
every state in which P holds1.

I Hence: P “alone” must be enough for the desired conclusion
(so must be a strong enough assertion).

I But we are interested in the weakest assertion P with that
property.

1 . . . and in which C terminates . . .

Hoare triples as verification formulas

Some “special cases” and their meaning:

I { true } C {Q }
. . . means that whenever program piece C terminates, after-

wards Q holds (without any particular preconditions).

I { false } C {Q }
. . . means practically nothing. (Why?)

I {P } C { true }
. . . ditto.

I {P } C { false }
. . . means that starting from states in which P holds, the

execution of C never terminates.

The Hoare calculus

. . . is meant to:

I make sure that assertions are used correctly,

I describe the transformation of assertions under execution of
programs, and

I ultimately prove the truthfulness of verification formulas.

To this aim:

I formal capturing of the impact of basic language constructs
on assertions

I rules to derive true verification formulas for larger programs
from true verification formulas for program pieces

Self-imposed restrictions

#inc lude <s t d i o . h>

i n t main ()
{ i n t n , s , i ;

s c a n f ("%d" ,&n) ;
s =0;
i =1;
whi le (i<=n)
{ s=s+i ∗ i ;

i=i +1;
}

p r i n t f ("%d" , s) ;
return 0 ;

}

} We only consider such
program pieces (particularly,
no input/output, and only
certain control structures)

Rules for conditionals

Recall, from formal syntax description:

- if
���
- (

���
- Expression -)
���
- Statement -

- if
���
- (

���
- Expression -)
���
- Statement - else

�� �
- Statement -

So when does {P } if (T) C else D {Q } hold?

I In every state in which P holds, it could be the case that T
holds, or not; depending on that then execution of C or D.

I In any case, afterwards Q should hold.

I In the one case, we could express this requirement through the
verification formula {P && T } C {Q }, in the other through
the verification formula {P && !T } D {Q }.

I Since we need to be prepared for both cases, the following
rule:

{P && T } C {Q } {P && !T } D {Q }
CR{P } if (T) C else D {Q }

Rules for conditionals

And what about {P } if (T) C {Q } ?

I Again, in every state in which P holds, T either does or does
not hold.

I In the one case, again reasonably require: {P && T } C {Q }.
I But in the other case?

I Since no execution of C (or of anything) in that case, simply
require nothing additionally at all? Not a good idea!

I Simply require P ≡ Q ? Does not consider the “T-case”!
I So require (P && !T) ≡ Q ? Too strong!
I Solution: require (P && !T)⇒ Q !

(“⇒” = logical implication, nothing to do with the Hoare
calculus specifically)

I Hence, rule variant:

{P && T } C {Q } (P && !T)⇒ Q
CR{P } if (T) C {Q }

Rules for assignment statements

- Ident - =
���
- Expression -

In some sense the most simple kind of statement, but semantics
surprisingly subtle.

First some examples of verification formulas that should be true:

1. { true } x=42; { x==42 }
2. { x==0 } x=x+1; { x==1 }
3. { y==0 } x=y+1; { x==1 }
4. { x==y } x=x+1; { x==y+1 }
5. { x!=y } z=x; { z!=y }
6. { x!=y } z=y; { x!=z }
7. { x!=y } z=y; { x!=y }

How could we capture all these cases in a uniform way, and do so
by formulating a weakest precondition?

Rules for assignment statements

A minimal (and actually sufficient) requirement to hold before an
assignment x=e; so that afterwards Q holds, is that (beforehand)
the assertion Q holds with all occurrences of x replaced by e.

Notation for the thus newly formed assertion: Qx
e

Examples:

I (x==42)x
42 = (42==42)

I (x==1)x
x+1 = (x+1==1)

I (x==1)x
y+1 = (y+1==1)

I (x!=z)z
y = (x!=y)

I (x!=y)z
y = (x!=y)

im Allgemeinen bei Qx
e

keine (über Quantoren etc.)
gebundenen Vorkommen
von Variablen ersetzen!

Rules for assignment statements

And indeed, it makes sense that:

1. { 42==42 } x=42; { x==42 }
2. { x+1==1 } x=x+1; { x==1 }
3. { y+1==1 } x=y+1; { x==1 }
4. . . .

Hence, reasonable rule (actually, an axiom):

AA{Qx
e } x=e; {Q }

However, we wanted to show 1. above under the precondition true
(not under the precondition 42==42), as well as 2. under the
precondition x==0 (not under the precondition x+1==1), etc.

Hence, rule variant:

P ⇒ Qx
e

AA{P } x=e; {Q }

im Allgemeinen bei Qx
e

keine (über Quantoren etc.)
gebundenen Vorkommen
von Variablen ersetzen!

Combination Proof trees

Proof for “more complex” programs by plugging together
individual rule applications:

(true && (x<0))⇒ ((−x)>=0)
AA{ true && (x<0) }

x=−x;
{ x>=0 } (true && !(x<0))⇒ (x>=0)

CR{ true } if (x<0) x=−x; { x>=0 }

(AA = Assignment Axiom, CR = Conditional Rule)

Still open proof obligations (purely mathematical/logical
expressions) are displayed in frames here, and from now on.

Further useful rules

To “cut” larger program pieces (SR = Sequence Rule):

{P } C {R } {R } D {Q }
SR{P } C D {Q }

Potentially existing block markings are silently removed:

{P } C {Q }
(often not even denoted in the tree){P } {C} {Q }

For “managing” pre- and postconditions
(SP = Stronger Precondition, WP = Weaker Postcondition):

P ⇒ R {R } C {Q }
SP{P } C {Q }

{P } C {R } R ⇒ Q
WP{P } C {Q }

Key challenge: Dealing with loops

For simplicity, only while-loops

- while
�� �
- (

���
- Expression -)
���
- Statement -

When does {P } while (T) C {Q } hold?

I As with if , we know that before (every) execution of program
piece C here, the condition T holds.

I We also know that after finishing the loop (not just its body
C), the condition T does not anymore hold.

I We know that during the first execution of the body C of the
loop, beside T also P holds.

I Unfortunately, we do not necessarily know that this is also the
case during further executions of the body.

I If we allow ourselves the assumption, though, that C does not
change the truth of P (called loop invariant!), then:

{P && T } C {P }
IR (= Iteration Rule){P } while (T) C {P && !T }

here P usually
named as Inv

A concrete example

Let us consider:

In: a, b

b > 0 ? Out: a

a > b ?

a = a − b b = b − a

yes

no

no

yes

respectively:

#inc lude <s t d i o . h>

i n t main ()
{ i n t a , b ;

s c a n f ("%d" ,&a) ;
s c a n f ("%d" ,&b) ;
whi le (b>0)
{ i f (a>b) a=a−b ;

e l s e b=b−a ; }
p r i n t f ("%d" , a) ;
return 0 ; }

Verification goal:

{ (a==A) &&(b==B) &&(a>0) &&(b>=0) }
while (b>0) {if (a>b) a=a−b; else b=b−a;}
{ a==gcd(A,B) }

A concrete example

Verification goal:

{ (a==A) &&(b==B) &&(a>0) &&(b>=0) }
while (b>0) {if (a>b) a=a−b; else b=b−a;}
{ a==gcd(A,B) }

Obviously, we will need to apply the iteration rule:

{ Inv && T } C { Inv }
IR{ Inv } while (T) C { Inv && !T }

Since a==gcd(A,B) does not cover !(b>0), we need to add (at
least) that, via the rule for weaker postcondition:

{ Inv &&(b>0) } ... { Inv }
IR{ Inv }

while (b>0) {...}
{ Inv && !(b>0) } (Inv && !(b>0))⇒ (a==gcd(A,B))

WP{ . . . } while (b>0) {...} { a==gcd(A,B) }

A concrete example

But the loop invariant cannot simply be the originally given P,
which was: (a==A) &&(b==B) &&(a>0) &&(b>=0). (Why?)

Hence, also application of the rule for stronger precondition:

P ⇒ Inv

{ Inv &&(b>0) } ... { Inv }
IR{ Inv }

while (b>0) {...}
{ Inv && !(b>0) }

SP{P } while (b>0) {...} { Inv && !(b>0) }

So the “only” remaining problem now is to find Inv such that:

1.
...

{ Inv &&(b>0) } if (a>b) a=a−b; else b=b−a; { Inv }
2. P ⇒ Inv

3. (Inv && !(b>0))⇒ (a==gcd(A,B))

A concrete example

Idea: Exploit that the gcd of a and b does not change when
one subtracts one from the other.

So, Inv could be: (gcd(a, b)==gcd(A,B)) &&(a>0) &&(b>=0)

To then establish the required
...

{ Inv &&(b>0) } if (a>b) a=a−b; else b=b−a; { Inv }
which is still open, first an application of the conditional rule:

{ Inv &&(b>0) &&(a>b) }
a=a−b;
{ Inv }

{ Inv &&(b>0) && !(a>b) }
b=b−a;
{ Inv }

CR{ Inv &&(b>0) } if (a>b) a=a−b; else b=b−a; { Inv }

check that 2.
and 3. hold!

A concrete example

. . . and then in both branches an assignment axiom on top:

(Inv &&(b>0) &&(a>b))⇒ Inva
a−b

AA{ Inv &&(b>0) &&(a>b) } a=a−b; { Inv }
and

(Inv &&(b>0) && !(a>b))⇒ Invb
b−a

AA{ Inv &&(b>0) && !(a>b) } b=b−a; { Inv }

Due to Inv being (gcd(a, b)==gcd(A,B)) &&(a>0) &&(b>=0),

I Inva
a−b is:

(gcd(a−b, b)==gcd(A,B)) &&(a−b>0) &&(b>=0)

I Invb
b−a is:

(gcd(a, b−a)==gcd(A,B)) &&(a>0) &&(b−a>=0)

The proof obligations still to prove (see above) do indeed hold!

A concrete example: Complete proof tree

P ⇒ Inv

(Inv &&(b>0) &&(a>b))⇒ Inva
a−b

AA{ Inv &&(b>0) &&(a>b) }
a=a−b;
{ Inv }

(Inv &&(b>0) && !(a>b))⇒ Invb
b−a

AA{ Inv &&(b>0) && !(a>b) }
b=b−a;
{ Inv }

CR{ Inv &&(b>0) }
if (a>b) a=a−b; else b=b−a;
{ Inv }

IR{ Inv }
while (b>0) {if (a>b) a=a−b; else b=b−a;}
{ Inv && !(b>0) }

SP{P }
while (b>0) {if (a>b) a=a−b; else b=b−a;}
{ Inv && !(b>0) } (Inv && !(b>0))⇒ (a==gcd(A,B))

WP{P }
while (b>0) {if (a>b) a=a−b; else b=b−a;}
{ a==gcd(A,B) }

where

P is: (a==A) &&(b==B) &&(a>0) &&(b>=0)

Inv is: (gcd(a, b)==gcd(A,B)) &&(a>0) &&(b>=0)

Summary of the Hoare calculus rules

{P && T } C {Q } {P && !T } D {Q }
CR{P } if (T) C else D {Q }

{P && T } C {Q } (P && !T)⇒ Q
CR{P } if (T) C {Q }

AA{Qx
e } x=e; {Q }

P ⇒ Qx
e

AA{P } x=e; {Q }

{P } C {R } {R } D {Q }
SR{P } C D {Q }

P ⇒ R {R } C {Q }
SP{P } C {Q }

{P } C {R } R ⇒ Q
WP{P } C {Q }

{ Inv && T } C { Inv }
IR{ Inv } while (T) C { Inv && !T }

Application to another example

#inc lude <s t d i o . h>

i n t main ()
{ i n t n , s , i ;

s c a n f ("%d" ,&n) ;
s =0;
i =1;
whi le (i<=n)
{ s=s+i ∗ i ;

i=i +1;
}

p r i n t f ("%d" , s) ;
return 0 ;

}

Example run:

I n==3, s==0, i==1

I n==3, s==1, i==1

I n==3, s==1, i==2

I n==3, s==5, i==2

I n==3, s==5, i==3

I n==3, s==14, i==3

I n==3, s==14, i==4

Verification goal:

{ (n>=0) &&(s==0) &&(i==1) }
while (i<=n) {s=s+i∗i; i=i+1;}
{ s==

∑n
j=1 j

2 }

Application to another example

Verification goal:

{ (n>=0) &&(s==0) &&(i==1) }
while (i<=n) {s=s+i∗i; i=i+1;}
{ s==

∑n
j=1 j

2 }

Again, as in previous example, use of SP and WP rules, towards:

...
{ Inv && (i<=n) } s=s+i∗i; i=i+1; { Inv }

IR{ Inv } while (i<=n) {s=s+i∗i; i=i+1;} { Inv && !(i<=n) }

Where for the still to determine Inv it should hold that:

1. ((n>=0) &&(s==0) &&(i==1))⇒ Inv

2. (Inv && !(i<=n))⇒ (s==
∑n

j=1 j
2)

Aha!
Inv is: (0<i<=n+1) &&(s==

∑ i−1
j=1 j

2)

(and that even satisfies 1. and 2.)

Application to another example

Where for the still to determine Inv it should hold that:

1. ((n>=0) &&(s==0) &&(i==1))⇒ Inv

2. (Inv && !(i<=n))⇒ (s==
∑n

j=1 j
2)

To determine the loop invariant, recall:

I n==3, s==0, i==1

I n==3, s==1, i==1

I n==3, s==1, i==2

I n==3, s==5, i==2

I n==3, s==5, i==3

I n==3, s==14, i==3

I n==3, s==14, i==4

Aha!
Inv is: (0<i<=n+1) &&(s==

∑ i−1
j=1 j

2)

(and that even satisfies 1. and 2.)

Application to another example

So what remains to establish:
...

{ Inv && (i<=n) } s=s+i∗i; i=i+1; { Inv }

with Inv being (0<i<=n+1) &&(s==
∑ i−1

j=1 j
2)

Twice assignment axiom (before that, sequence rule):

(Inv && (i<=n))⇒ (Inv i
i+1)s

s+i∗i
AA

{ Inv && (i<=n) } s=s+i∗i; { Inv i
i+1 }

AA
{ Inv i

i+1 } i=i+1; { Inv }
SR{ Inv && (i<=n) } s=s+i∗i; i=i+1; { Inv }

Remains to check: ((0<i<=n) &&(s==
∑ i−1

j=1 j
2))

⇒ ((0<i+1<=n+1) &&(s+i∗i==
∑ i

j=1 j
2)) X

Application to another example: Complete proof tree

((n>=0) &&(s==0) &&(i==1))⇒ Inv

(Inv && (i<=n))⇒ (Inv i
i+1)s

s+i∗i
AA{ Inv && (i<=n) }

s=s+i∗i;
{ Inv i

i+1 }

AA
{ Inv i

i+1 }
i=i+1;
{ Inv }

SR{ Inv && (i<=n) }
s=s+i∗i; i=i+1;
{ Inv }

IR{ Inv }
while (i<=n) {s=s+i∗i; i=i+1;}
{ Inv && !(i<=n) }

SP{ (n>=0) &&(s==0) &&(i==1) }
while (i<=n) {s=s+i∗i; i=i+1;}
{ Inv && !(i<=n) } (Inv && !(i<=n))⇒ (s==

∑n
j=1 j

2)

WP{ (n>=0) &&(s==0) &&(i==1) }
while (i<=n) {s=s+i∗i; i=i+1;}
{ s==

∑n
j=1 j

2 }

where

Inv is: (0<i<=n+1) &&(s==
∑ i−1

j=1 j
2)

