Programming Paradigms
3rd Lecture
Prof. Janis Voigtlander

University of Duisburg-Essen

Summer Term 2017

Important questions ...

. which a syntax description (alone) cannot answer:

» What is the formal meaning of a (concrete) program?
» When are two programs equivalent?

» How can we prove what a program does?

» Can one determine the behavior of a program from that of its
syntactic building blocks?

> Is it even possible to separately define the formal meaning of
individual language constructs?

» When is a program correct?

What does one actually mean by “correct”?

Partial correctness:
» Provision of input/output specifications:

» Which inputs are needed?

» What requirements do these inputs have to satisfy so
that the program works?

» Which outputs, with which properties, are produced?

» Every produced output satisfies the above output
specification, if the inputs did satisfy the input specification.

» But it is not necessarily guaranteed that an output is always
produced at all.

Total correctness: partial correctness 4 successful termination

Hoare triples as verification formulas

We use “Hoare triples” as input/output specifications, notation:
{P}
C

{Prc{Q}r o {Q}

where:
» Cis a program piece (syntax), and

» P and Q are assertions about the state space of the (whole)
program: logic expressions, containing program variables.

Beispiele: (not necessarily true propositions!)
» {x==0}x=x+1; {x==1}
> { (x==0) && (y==2) } x=1; x=2xx; { (x>1) && ((y+2)!=3) }
» {x==0} x=x+1; {x==0}

Hoare triples as verification formulas

Hoare triple { P} C { Q } to be read as:
» If in some program (memory) state the assertion P holds,
> one then executes the program piece C and it terminates,
» then in the state afterwards the assertion @ definitely holds.

(For concrete P, C, Q what is said above can be true or not.)

Notes:
» This describes only partial correctness.

» The validity of @ after execution of C is really relevant for
every state in which P holds!.

» Hence: P “alone” must be enough for the desired conclusion
(so must be a strong enough assertion).

» But we are interested in the weakest assertion P with that
property.

. and in which C terminates ...

Hoare triples as verification formulas

Some “special cases” and their meaning:

» {true} C{Q}
. means that whenever program piece C terminates, after-
wards Q holds (without any particular preconditions).

» {false} C{Q}
. means practically nothing. (Why?)

» {P} C{true}
... ditto.

» {P} C{false}
. means that starting from states in which P holds, the
execution of C never terminates.

The Hoare calculus

. Is meant to:
» make sure that assertions are used correctly,

» describe the transformation of assertions under execution of
programs, and

> ultimately prove the truthfulness of verification formulas.

To this aim:

» formal capturing of the impact of basic language constructs
on assertions

> rules to derive true verification formulas for larger programs
from true verification formulas for program pieces

Self-imposed restrictions

#include <stdio.h>

int main()

{ int n,s,i;

scanf("%d",&n);

s=0;)

i=1; We only consider such

while (i<=n) program pieces (particularly,
{ s=s+ixi; } no input/output, and only

i=i+1; certain control structures)

} J

printf("%d",s);

return 0;

Rules for conditionals

Recall, from formal syntax description:

Expression % Statement }—»
Expression m Statement @

So when does { P} if (T) Celse D {Q} hold?

> In every state in which P holds, it could be the case that T
holds, or not; depending on that then execution of C or D.

> In any case, afterwards @ should hold.

> In the one case, we could express this requirement through the
verification formula { P&& T} C{ Q}, in the other through
the verification formula { P&& !'T} D { Q }.

» Since we need to be prepared for both cases, the following
rule:

{P&&T}C{Q} {P&&'T}D{Q}
{P}if (T)Celse D{Q}

CR

Rules for conditionals
And what about { P} if (T)C{Q}?

» Again, in every state in which P holds, T either does or does
not hold.

> In the one case, again reasonably require: { P&& T} C{Q}.
» But in the other case?

» Since no execution of C (or of anything) in that case, simply
require nothing additionally at all? Not a good idea!

» Simply require P = Q? Does not consider the “T-case”!

» So require (P&& !'T) = Q7 Too strong!

» Solution: require (P&& ! T) = Q!
("=" = logical implication, nothing to do with the Hoare
calculus specifically)

» Hence, rule variant:

{P&T}IC{Q} (P& =Q
{PYif (T)C{Q}

Rules for assighment statements

In some sense the most simple kind of statement, but semantics
surprisingly subtle.

First some examples of verification formulas that should be true:
. { true } x=42; {x==42}

A x==0} x=x+1; {x==1}

{y==0} x=y+1; {x==1}

A x==y } x=x+1; {x==y+1}

Axl=y }z=x; {z!=y}

Axl=y } z=y; {xI=z}

{xl=y} z=y; {x!=y}

How could we capture all these cases in a uniform way, and do so
by formulating a weakest precondition?

L N N

~

Rules for assighment statements

A minimal (and actually sufficient) requirement to hold before an
assignment x=e; so that afterwards Q holds, is that (beforehand)
the assertion @ holds with all occurrences of x replaced by e.

Notation for the thus newly formed assertion: Q&

Examples:
> (x_:42)ﬁ2 = (42==42)
> (==1); = (cH==1)
> (==1R) = (yH1==1)
> (=2 = (xi=y)
> (xI=y)§ = (xl=y)

Rules for assighment statements

And indeed, it makes sense that:

. {42==42} x=42; {x==42}
2. {x+1==1} x=x+1; {x==1}
3. {y+1==1} x=y+1; {x==1}
4, ...

—

Hence, reasonable rule (actually, an axiom):

(& r=e (@) ™

However, we wanted to show 1. above under the precondition true
(not under the precondition 42==42), as well as 2. under the
precondition x==0 (not under the precondition x+1==1), etc.

Hence, rule variant:
P= QX
Qe AA
{P}x=e{Q}

Combination ~~ Proof trees

Proof for “more complex” programs by plugging together
individual rule applications:

| (true && (x<0)) = ((—x)>=0)
{ true && (x<0) }

(x>0} | (true && (x<0)) = (x>=0)|
{true} if (x<0) x=—x; {x>=0}

AA

CR

(AA = Assignment Axiom, CR = Conditional Rule)

Still open proof obligations (purely mathematical/logical
expressions) are displayed in frames here, and from now on.

Further useful rules

To “cut” larger program pieces (SR = Sequence Rule):

{PYC{R} {R}D{Q}
{PYCD{Q}

SR

Potentially existing block markings are silently removed:

{Prc{Qy
{PH{C{Q}

(often not even denoted in the tree)

For “managing” pre- and postconditions
(SP = Stronger Precondition, WP = Weaker Postcondition):

P=R_{R}C{Q}
{Prc{Q}

{P}C{R} R=Q
{Prc{Q}

P

WP

Key challenge: Dealing with loops

For simplicity, only while-loops

Expression % Statement ’—»

When does { P } while (T) C{Q } hold?

» As with if, we know that before (every) execution of program
piece C here, the condition T holds.

» We also know that after finishing the loop (not just its body
C), the condition T does not anymore hold.

» We know that during the first execution of the body C of the
loop, beside T also P holds.

> Unfortunately, we do not necessarily know that this is also the
case during further executions of the body.

» If we allow ourselves the assumption, though, that C does not
change the truth of P (called loop invariant!), then:

here P usually {’D_&&T}C{P}
named as /nv { P} while (T) C{P&&!T}

IR (= lteration Rule)

A concrete example

Let us consider: respectively:

#include <stdio.h>

int main()

no { int a,b;

fes scanf("%d",&a);

scanf("%a",&b);
@ no while (b>0)
{ if (a>b) a=a—b;
else b=b—a; }
)

printf("%d",a);
| return 0; }

|a:a—b| |b:b—a|

Verification goal:
{(a==A) &&(b==B) &&(a>0) &&(b>=0) }
while (b>0) {if (a>b) a=a—b; else b=b—a;}
{a==gcd(A, B) }

A concrete example

Verification goal:
{(a==A) &&(b==B) &&(a>0) &&(b>=0) }
while (b>0) {if (a>b) a=a—b; else b=b—a;}
{a==gcd(A,B) }

Obviously, we will need to apply the iteration rule:

{Inv&& T} C{Inv}
{Inv} while (T) C{/Inv&&!T}

IR

Since a==gcd(A, B) does not cover !(b>0), we need to add (at
least) that, via the rule for weaker postcondition:

{Inv&&(b>0)} ... {Inv} R

{Inv}
hile (b>0) {...
et [&&1(520) > (-—ged(A B)]

{...} while (b>0) {...} {a==gcd(A, B) }

WP

A concrete example

But the loop invariant cannot simply be the originally given P,
which was: (a==A) &&(b==B) &&(a>0) &&(b>=0). (Why?)

Hence, also application of the rule for stronger precondition:

{Inv&&(b>0)} ... {Inv} R
{Inv}
while (b>0) {...}
P = Inv {Inv&& !(b>0)}

{P} while (b>0) {...} {Inv&& I(b>0)}

So the “only” remaining problem now is to find /nv such that:

(Inv&&(b>0)] if (a>b) a—a—b; else b=b—_a; { /v }

2

3.](/nv&&l b>0)) = (a==gcd(A, B))

A concrete example

Idea: Exploit that the gcd of a and b does not change when
one subtracts one from the other.

So, Inv could be: (gcd(a, b)==gcd(A, B)) &&(a>0) &&(b>=0)

check that 2.

and 3. hold!
To then establish the required

(Inv&&(b>0)] if (a>b) a—a—b; else b=b—a; { Inv }
which is still open, first an application of the conditional rule:
{Inv &&(b>0) &&(a>b) } {Inv&&(b>0) && !(a>b) }
a=a—b; b=b—a;

{Inv} {Inv}
{Inv &&(b>0) } if (a>b) a=a—b; else b=b—a; { Inv}

CR

A concrete example

. and then in both branches an assignment axiom on top:

(Inv &&(b>0) &&(a>b)) = Inv3_,
{Inv &&(6>0) &&(a>b) } a=a—b; {Inv} A

and

(Inv &&(b>0) && !(a>b)) = Invf
{Inv &&(b>0) && 1(a>b) } b=b—a; {Inv} "7
Due to Inv being (gcd(a, b)==gcd(A, B)) &&(a>0) &&(b>=0),

> lnv:_b is:
(ged(a—b, b)==gcd(A, B)) &&(a—b>0) &&(b>=0)
b

> Invb is:

(gcd(a,b—a)==gcd(A, B)) &&(a>0) &&(b—a>=0)

The proof obligations still to prove (see above) do indeed hold!

A concrete example: Complete proof tree

(Inv &&(b>0) && |(a>b)) = Inv]_

(Inv &&(b>0) &&(a>b)) = Invd_p ‘

{inv &&(b>0) &&(a>b)) AA {Inv &&(b>0) && I(a>b) | AA
a=a—b; b=b—a;
{Inv} {Inv}
{Inv &&(6>0)} R
if (a>b) a=a—b; else b=b—a;
{Inv}
{Inv} IR

while (b>0) {if (a>b) a=a—b; else b=b—a;}
{Inv && (b>0) }

{P}

while (b>0) {if (a>b) a=a—b; else b=b—a;}

{Inv && 1(b>0) } ‘ (Inv && 1(b>0)) = (a==gcd(A, B)) ‘
Py WP
while (b>0) {if (a>b) a=a—b; else b=b—a;}
{a==gcd(A B)}

SP

where
Pis: (a==A) &&(b==B) &&(a>0) &&(b>=0)
Inv is: (ged(a, b)==gcd(A, B)) &&(a>0) &&(b>=0)

Summary of the Hoare calculus rules

{P&&T}C{Q} {P&&'!T}D{Q}

(P if (T)Celse D{Q} CR
{P&&T}C{Q} (P&&IT=Q
{PYIf (T)C{Q}
AA P:>Qé(AA
{Q}x=e;{Q} {P}x=e;{Q}
{P}C{R} {R}D{Q} SR
{P}CD{Q}
P=R {R}C{Q} {P}C{R} R=Q
fPrcier > fPrc{er P

{Inv&&T} C{Inv}
{Inv} while (T) C{/nv&&!T}

IR

Application to another example

#include <stdio.h> Example run:

> n::?), S::O' ==
int main() R S T
{ int n,s,i; __'__'___
scanf("%d",&n); > n==3, s==1, i==2
S:O, > n::3, S::5Y ==
|:1, > n::3, S::5r |::3
While (I<:n) > n::3, S::14’ |::3
{ Tzf—:—ll*l ' > n==y), S::14' ==
} .
printf("%d",s); Verification goal:
return 0, {(n>=0) &&(s==0) &&(i==1)}
1 while (i<=n) {s=s-+ii; i=i+1;}

{s==371/%}

Application to another example

Verification goal:

{(n>=0) &&(s==0) &&(i==1) }
while (i<=n) {s=s+ix*i; i=i+1;}

{s==3]1/%}

Again, as in previous example, use of SP and WP rules, towards:

{Inv&& (i<=n)} S::S—I-i*i; i=i+1; { Inv}
{Inv } while (i<=n) {s=s+ixi; i=i+1;} { Inv && !(i<=n)}

IR

Where for the still to determine Inv it should hold that:
L | ((n>=0) &&(s==0) &&(i==1)) = Inv |

2. | (Inv&& I(i<=n)) = (s== Y1, %)

Application to another example

Where for the still to determine Inv it should hold that:
L | ((n>=0) &&(s==0) &&(i==1)) = Inv|

2.

(Inv&& \(i<=n)) = (s==>_"_, %)

J

To determine the loop invariant, recall:

>

>

>

>

>

n==3, s==0, i==

n==3, s==1, i==

n==3, s==1, i==

n==3, s==5, i==2 Ahal _
ne—3 s——p i——3 Invis: (0<i<=n+1)&&(s== ST i)
n=—3 s——14, i==3 (and that even satisfies 1. and 2.)

n==3,

s==14, i==4

Application to another example

So what remains to establish:

{Inv&& (i<=n)} s:.s—H*i; i=i+1; {Inv}
with /nv being (0<i<=n+1) &&(s== ZJ 172

Twice assignment axiom (before that, sequence rule):

(Inv && (i<=n)) = (v})% ...

- AA - AA
{Inv && (i<=n)} s=s+ixi; { Inv=+1 } { Inv=+1 Yi=i+1; {Inv}

{Inv&& (i<=n)} s=s+ixi; i=i+1; {Inv}

SR

Remains to check: |((0<i<=n)&&(s== ZJ' %12))

= ((0<i+l<=n+1) &&(s+ixi==Y|_; j?))

Application to another example: Complete proof tree

(Inv && (i<=n)) = (/nv2+1)

S P
Siki

{Inv&ia&(i<:n)} {InV}+1}
s=s+ixi; imi T
{I"V:+1} {Inv}

{Inv&& (i<=n)}
s=s+ixi; i=i+1;

{Inv}

{Inv} IR
- while (i<=n) {s=s+ixi; i=i+1;}
[((n>=0) &&(s==0) &&(i==1)) = Inv| [Iny&& I(i<=n)} o

{(n>=0) &&(s==0) &&(i==1) }

Vi bt sy (v && \(i<=n) = (== 3}, /)
{(n>=0) &&(s==0) &&(i==1)}
while (i<=n) {s=s+ixi; i=i+1;}
{s==27_,/°}

WP

where
Invis: (0<i<=n+1) &&(s== Z/';lljz)

