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Ideal (and to some extent, history) of declarative programming

process 

specification

Freeing the programmer from the necessity to explicitly plan and specify the

computation process that leads to a problem solution:  “What instead of How”

???

problem 

specification
Problem

Process

How?

What?

human 

intelligence

artificial 

“intelligence”

!!!

Solution
/       

operationalisation
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Characteristics of declarative specifications (vs. imperative programs)

• Declarative programs (specifications) are often:

- significantly shorter

- significantly more readable

- significantly more maintainable (and more reliable)

than their imperative “counterparts”.

• In particular functional programming languages emphasize abstractions that

exclude/constrain or (flexibly) put under control side effects like mutation etc.

(S. Peyton Jones: “Haskell is the world’s finest imperative programming language.”)

• Declarative concepts are particularly well suited for realising/embedding domain 

specific languages (DSLs).

• But:

- Declarative languages are still less widespread than imperative languages.

- Development tools like IDEs etc. for working with declarative languages are

often lacking (in quantity or quality).

- Limitations to apply declarative languages are often based on (assumptions

about) not sufficiently efficient execution/operationalisation.
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Declarative programming “in the real world”

• Commercial users:

- in banking sector (trading, quantitative analysis), e.g., Barclays Capital,

Jane Street Capital, Standard Chartered Bank, McGraw Hill Financial, …

- in communication/web services, e.g., Ericsson, Facebook, Google

- hardware design/verification, e.g., Intel, Bluespec, Antiope

- system-level development, e.g., Microsoft

- high assurance software, e.g., Galois

• “Non-academic” languages:

- for special applications, e.g., Erlang (Ericsson), reFLect (Intel)

- for general purposes, e.g., F# (Microsoft)

- influence on mainstream languages, e.g., Java, C#, and “even”

Visual Basic (generally: LINQ framework)
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http://cufp.org/

http://groups.google.co.uk/group/cu-lp
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Important functional languages in historic overview

LISP

ML

Miranda

Haskell

2000

1990

1960

1970

1980

1959, McCarthy (MIT/USA)

1980, Milner (Edinburgh/GB)

1985, Turner (Canterbury/GB)
1987, Hudak/Wadler (Yale/USA)

Scheme 1975, Sussman/Steele (MIT/USA)

Haskell 98
http://haskell.org

“A History of Haskell: Being Lazy with Class”

(P. Hudak, J. Hughes, S. Peyton Jones, P. Wadler)
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What does the name “Haskell” stand for?

• Programming languages are often named via acronyms

(e.g., COBOL, FORTRAN, BASIC, …)

• But the name “Haskell” is derived from a person:  

Haskell  Brooks Curry
(1900 – 1982)

American logician
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• Text books (for example):

• R. Bird: 

Introduction to Functional Programming using Haskell 

Prentice Hall, 1998

• M. Block, A. Neumann:

Haskell-Intensivkurs

Springer-Verlag, 2011

• P. Hudak:  

The Haskell School of Expression 

Cambridge University Press, 2000

• G. Hutton:

Programming in Haskell

Cambridge University Press, 2007

• S. Thompson: 

Haskell – The Craft of Functional Programming 

Addison Wesley, 2011

• Introductory article:

P. Hudak, J. Peterson, J. Fasel: A Gentle Introduction to Haskell

(haskell.org, 1999)
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Literature on Haskell
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The implementation we are going to use: GHC(i)

http://www.haskell.org/ghc/

http://hackage.haskell.org/platform/
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Programming Paradigms

Examples of DSLs embedded in Haskell
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Parsing and dealing with arithmetic expressions

• Suppose we want to compile arithmetic expressions into “machine code”,

for example thus:

• First we need to describe the structure of (valid) expressions.

• For example by means of a formal grammar (say, a BNF):

• … and now we could (in a “conventional” programming language) develop/implement

an algorithm for parsing according to this grammar (or any grammar).

"2+3*5"  "LIT 2; LIT 3; LIT 5; MUL; ADD; "

"2*3+5"  "LIT 2; LIT 3; MUL; LIT 5; ADD; "

⟨Expr⟩ ::=  ⟨Term⟩ ‘+’  ⟨Expr⟩ |  ⟨Term⟩
⟨Term⟩ ::=  ⟨Factor⟩ ‘*’ ⟨Term⟩ |  ⟨Factor⟩
⟨Factor⟩ ::=  ⟨Nat⟩ |  ‘(’ ⟨Expr⟩ ‘)’
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Parsing and dealing with arithmetic expressions

• It would be more attractive to use the available specification

and consider it, as directly as possible, as a “program” itself.

• Actually quite close:

• Trying out:

expr = ( ADD  <$>  term  <*  char '+'  <*>  expr )  | | |  term

term    = ( MUL  <$>  factor  <*  char '*'  <*>  term )  | | |  factor

factor  = ( LIT  <$>  nat )  | | |  ( char '('  *>  expr <*  char ')' )

>  parse expr "2*3+5"

ADD (MUL (LIT 2) (LIT 3)) (LIT 5)

⟨Expr⟩ ::=  ⟨Term⟩ ‘+’  ⟨Expr⟩ |  ⟨Term⟩
⟨Term⟩ ::=  ⟨Factor⟩ ‘*’ ⟨Term⟩ |  ⟨Factor⟩
⟨Factor⟩ ::=  ⟨Nat⟩ |  ‘(’ ⟨Expr⟩ ‘)’
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Parsing and dealing with arithmetic expressions

• To get the actually desired output:

• Then indeed:

• Alternatively, also possible to, e.g., directly compute the result:

data Expr =  LIT Int |  ADD Expr Expr |  MUL Expr Expr

instance Show Expr where

show (LIT n)           =  "LIT "  ++  show n  ++  "; "

show (ADD e1 e2)  =  show e1  ++  show e2  ++  "ADD; "

show (MUL e1 e2)  =  show e1  ++  show e2  ++  "MUL; " 

>  parse expr "2*3+5"

LIT 2; LIT 3; MUL; LIT 5; ADD; 

eval  (LIT n)         =  n

eval  (ADD e1 e2) =  eval e1  +  eval e2

eval  (MUL e1 e2) =  eval e1  *  eval e2
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Parsing and dealing with arithmetic expressions

• Alternatively, also possible to, e.g., directly compute the result:

• Then, for example:

• Or even evaluation directly while parsing:

>  eval (parse expr "2*3+5")

11

eval  (LIT n)         =  n

eval  (ADD e1 e2) =  eval e1  +  eval e2

eval  (MUL e1 e2) =  eval e1  *  eval e2

expr = ( (+)  <$>  term  <*  char '+'  <*>  expr )  | | |  term

term    = ( (*)  <$>  factor  <*  char '*'  <*>  term )  | | |  factor

factor  = nat | | |  ( char '('  *>  expr <*  char ')' )

>  parse expr "2*3+5"

11

• Since then:



Summer Term 2017 Programming Paradigms 25

Another domain: describing graphics with “gloss”

• A simple library (install instructions will be given with exercises).

• Basic concepts:

Float, String, Path, Color, Picture

text ::  String ! Picture

line ::  Path ! Picture

polygon ::  Path ! Picture

arc ::  Float ! Float ! Float ! Picture

circle ::  Float ! Picture

…

color ::  Color ! Picture ! Picture

translate ::  Float ! Float ! Picture ! Picture

rotate ::  Float ! Picture ! Picture

scale ::  Float ! Float ! Picture ! Picture

pictures ::  [ Picture ] ! Picture
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Another domain: describing graphics with “gloss”

• Use in a concrete “program”:

• Let’s play a bit. …

module Main (main) where

import Graphics.Gloss

main = display (InWindow "Example" (100, 100) (0, 0)) white scene

scene = pictures

[

circleSolid 20

, translate 25 0 (color red (polygon [(0, 0), (10, –5), (10, 5)]))

]
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Programming Paradigms

Haskell Basics/Syntax



Summer Term 2017

n ! =n ! =
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The principle of functional programming

1                      if  n  0

n  (n – 1) !    if  n > 0

2 !

(2  (2 – 1) !)

Specifications: Function definitions

Operationalisation: Evaluation of expressions (syntactic reduction)

Matching /

Parameter

passing

n = 2

Case distinction

Reduction
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The principle of functional programming

2 ! 
 (2  (2 – 1) !) 

 (2  1! ) 

 (2  (1  (1 – 1) !)) 

 (2  (1  0 !)) 

 (2  (1  1))  

 (2  1)  

 2

Specification (“program”) 

Function definition(s)

Input:  term/expression to be evaluated

Output:  resulting value

(repeated) function application

predefined operators

n ! =

1                      if  n  0

n  (n – 1) ! if  n > 0

“Let the symbols do the work.”
Leibniz/Dijkstra 
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GHCi as simple calculator
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Basic types, operators and functions

• Int, Integer:

– the integer numbers (–12, 0, 42, ...)

– operators: +, –, *, ^

– functions: div, mod, min, max, ...

– comparisons: ==, /=, <, <=, >, >=

• Float, Double:

– the floating point numbers (–3.7, pi, ...)

– operators: +, –, *, /

– functions: sqrt, log, sin, min, max, ...

– comparisons: …

• Bool:

– the Boolean values (True, False)

– operators: &&, | |

– functions: not;  comparisons: …

• Char:

– individual characters ('a', 'b', '\n', ...)

– functions: succ, pred;  comparisons: …

Programming Paradigms 32
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Evaluating simple expressions

not: div(17,3)
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> 5+7

12

> div 17 3

5

> 17 `div` 3

5

> pi/1.5

2.0943951023932

not: min(sqrt(4.5),1.5^3)
> min (sqrt 4.5) (1.5^3) 

2.12132034355964

> 'a' <= 'c'

True

> if 12 < 3 | | 17.5 /= sqrt 5 then 17 – 3 else 6

14

instead:

never without else-branch!



Summer Term 2017

More complex types, expressions and values

• Lists:

– [Int] for [] or [–12, 0, 42]

– [Bool] for [] or [False, True, False]

– [[Int]] for [[3, 4], [], [6, –2]]

– …

– operators: :, ++, !!

– functions: head, tail, last, null, …

• Character sequences:

– String = [Char]

– special notation: "" for [] and "abcd" for ['a', 'b', 'c', 'd']

• Tuples:

– (Int, Int) for (3, 5) and (0, –4)

– (Int, String, Bool) for (3, "abc", False)

– ((Int, Int), Bool, [Int]) for ((0, –4), True, [1, 2, 3])

– [(Bool, Int)] for [(False, 3), (True, –4), (True, 42)]

– …

– functions: fst and snd on pairs

Programming Paradigms 34

> 3 : [–12, 0, 42]

[3, –12, 0, 42]

> [1.5, 3.7] ++ [4.5, 2.3]

[1.5, 3.7, 4.5, 2.3]

> [False, True, False] !! 1

True

> (3 – 4, snd (head [('a', 17), ('c', 3)]))

(–1, 17)
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Declaration of values

• In a file:

• After loading:

Programming Paradigms 35

x = 7

y = 2 * x

z = (mod y (x + 2), tail [1 .. y])

a = b – c

b = fst z

c = head (snd z)

d = (a, e)

e = [fst d, f]

f = head e

> z

(5, [2,3,4,5,6,7,8,9,10,11,12,13,14])

> a

3

> d

(3, [3, 3])

All these are 

declarations, 

not value-

changing 

assignments!

x = x + 1

makes no sense!
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Optional type annotations
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x , y :: Int

x = 7

y = 2 * x

z :: (Int, [Int])

z = (mod y (x + 2), tail [1 .. y])

a , b , c :: Int

a = b – c

b = fst z

c = head (snd z)

d :: (Int, [Int])

d = (a, e)

...
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Function definitions in Haskell

timesAndPlus x  y  z     x  ( y + z )

General form of a (very simple) function definition:

= def
to read asname of the defined function

formal parameters

defining expression

(here: 3 variables)

lower-case
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Declaration of functions (with type annotations)
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> min3 5 4 6

4

min3'' :: Int ! Int ! Int ! Int

min3'' x y z  =  min (min x y) z

> min3'' 5 4 6

4

isEven :: Int ! Bool

isEven n  =  (n `mod` 2) == 0

> isEven 12

True

min3 :: Int ! Int ! Int ! Int

min3 x y z  =  if x<y then (if x<z then x else z) 

else (if y<z then y else z)

> min3' (5, 4, 6)

4

Recall: “if-then” in Haskell always with explicit “else”!

min3' :: (Int, Int, Int) ! Int

min3' (x, y, z)  =  if x<y then (if x<z then x else z) 

else (if y<z then y else z)

equality test!
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Examples: syntax for function application

Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

f(g(x)) f  (g  x)

f(x,g(y)) f  x  (g  y)

f(x) g(y) f  x * g  y

f(a+b) f  (a + b)

f(a) + b f  a + b
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Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

f(g(x)) f  (g  x)

f(x,g(y)) f  x  (g  y)

f(x) g(y) f  x * g  y

f(a+b) f  (a + b)

Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

f(g(x)) f  (g  x)

f(x,g(y)) f  x  (g  y)

f(x) + g(y) f  x + g  y

Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

f(g(x)) f  (g  x)

f(x,g(y)) f  x  (g  y)

Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

f(g(x)) f  (g  x)

Mathe-üblich Haskell-üblich

f(x) f  x

f(x,y) f  x  y 

Math-like Haskell-like

f(x) f  x
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More on syntax of function definitions

• On the left side of a defining equation in Haskell, 

• no expressions still to be evaluated, but …

• only variables and constants (and patterns, see later …)

may occur: 

• On the right side of a defining equation,

• arbitrary expressions, also ones still to be evaluated, but …

• only variables from the left side (so no “fresh” variables)

may occur:

f  x (2 * y) =  x  y f  x  1 =  x  2 

okay

f  x  =  x  y f  x 1 =  x  2

okay

not allowed!

not allowed!
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More on syntax of function definitions

• In the list of formal parameters of a function definition,  every variable must appear

only exactly once:

not allowed!

instead: f n 0 m  |  n == m  =  n^2f n 0 n =  n^2
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Function definitions: distinguishing cases (1)

More complex function definitions are build from several alternatives.

Each alternative defines one case of the function:

n ! =

1 if n  0

n  (n – 1) ! if n > 0

fac n  |  n == 0     =   1

|  n  >  0     =   n  fac (n – 1)

But the “mathematical” style can also be imitated in Haskell, though the conditions

are placed before the equation sign:

fac n  =  if n == 0 then 1 else n * fac (n – 1)In Haskell, possible like so:
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Function definitions: distinguishing cases (2)

n ! =

1 if n  0

n  (n – 1) ! if n > 0

fac  n           | n == 0       1

| n  >  0  n  fac (n – 1)  

“Guards”

Boolean expressions

As in the mathematical

notation, the guards are

checked from top to

bottom, until the first

time a condition is

satisfied.

That case is then used for

reduction/continuing

evaluation.
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Function definitions: distinguishing cases (3)

fac  n           | n == 0       1

| n  >  0       n  fac (n – 1)  

fac 3

3  fac (3 – 1)

fac  n           | n == 0       1

| n  >  0       n  fac (n – 1)

fac (3)

undefined

The factorial function is only partially defined: for negative input parameters,

no “matching” case is found, so the result is undefined.
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Function definitions: distinguishing cases (4)

fac n           | n == 0       1

| n  >  0       n  fac (n – 1)

| otherwise      0

fac (3)

Changing into a totally defined function by adding a “catch all” case using the

pseudo condition otherwise:

0

between  x y z    | (x <= y)  &&  (y <= z)     =   True

| (y < x) | | (y > z) =   False

Sometimes also helpful for abbreviation:

between  x y z    | (x <= y)  &&  (y <= z)     =   True

| otherwise =   False



Summer Term 2017 Programming Paradigms 52

Function definitions: distinguishing cases (5)

fac n   | n == 0     1

| n > 0       n  fac (n – 1)  

is essentially only an abbreviation for:

fac n | n == 0     1

fac n | n > 0       n  fac (n – 1) 

Yet another notation variant, in which the first condition is expressed through a

constant parameter:

fac 0  1

fac n | n > 0       n  fac (n – 1) 

Variations:
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Function definitions: distinguishing cases (6)

ack 0    n        | n >= 0        n + 1

ack  m   0        | m > 0        ack  (m – 1)  1

ack  m   n        | n  > 0  &&  m > 0         ack  (m – 1)  (ack  m  (n – 1))

• Apparently an important basic technique:

selection of a “matching” definition case for a function application

to be evaluated

• Two selection criteria (in this order!): 

- “pattern matching” (to be considered in a bit more detail next)

- evaluation of guard conditions

(1)

(2)

(3)

ack  0  0 matches (1)

ack  2  0 matches (2)

ack  2  1 matches (3)

Ackermann function
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Order in going through cases in function definitions

ack 0    n        | n >= 0        n + 1

ack  m   0        | m > 0        ack  (m – 1)  1

ack  m   n        | n  > 0  &&  m > 0         ack  (m – 1)  (ack  m  (n – 1))

• When evaluating the application  ack 0 0 all three left sides would match!

• The actually defining case is the first matching one (going from top to bottom),

whose guard is satisfied.

• In this way it is ensured that there is always a unique function result.

(… if there is one at all!)

• For the above Ackermann function, every order of  the three equations gives the same

behaviour. But that is not always so!  fac 0 behaves differently here:

fac 0  1

fac n     n  fac (n – 1) 

fac n  n  fac (n – 1)

fac 0     1 1 undefined
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Pattern matching: principle

Rules of pattern matching:

• prerequisite:  identical function name

• constants match

• themselves ( e.g.,  1   1 )

• every variable  ( e.g.,  1   n )

• complex expressions match

• every variable ( e.g.,  (fib 3)   x )

• the specific constant that denotes their function result

( e.g.,  (fib 4)   5 )

• tuples match

• every variable, and tuples of same length if components match as well

(e.g.,  (1, False, fib 4)   (1, x, 5) )

• …

concrete application

left side of a definition

>  ack  0  (ack  2  1)

ack  0   n | . . .   =  . . .

pattern matching

enforces evaluation!


