Programming Paradigms

Summer Term 2017

4th Lecture

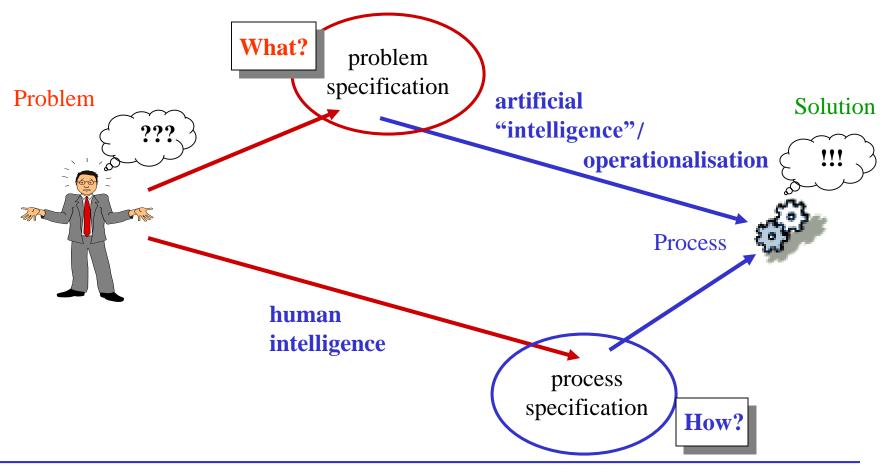
Prof. Janis Voigtländer University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

Ideal (and to some extent, history) of declarative programming

Freeing the programmer from the necessity to explicitly plan and specify the computation process that leads to a problem solution: **"What instead of How"**



Characteristics of declarative specifications (vs. imperative programs)

- Declarative programs (specifications) are often:
 - significantly shorter
 - significantly more readable
 - significantly more maintainable (and more reliable)

than their imperative "counterparts".

- In particular functional programming languages emphasize abstractions that exclude/constrain or (flexibly) put under control side effects like mutation etc. (S. Peyton Jones: "Haskell is the world's finest <u>imperative</u> programming language.")
- Declarative concepts are particularly well suited for realising/embedding domain specific languages (DSLs).
- But:
 - Declarative languages are still less widespread than imperative languages.
 - Development tools like IDEs etc. for working with declarative languages are often lacking (in quantity or quality).
 - Limitations to apply declarative languages are often based on (assumptions about) not sufficiently efficient execution/operationalisation.

Declarative programming "in the real world"

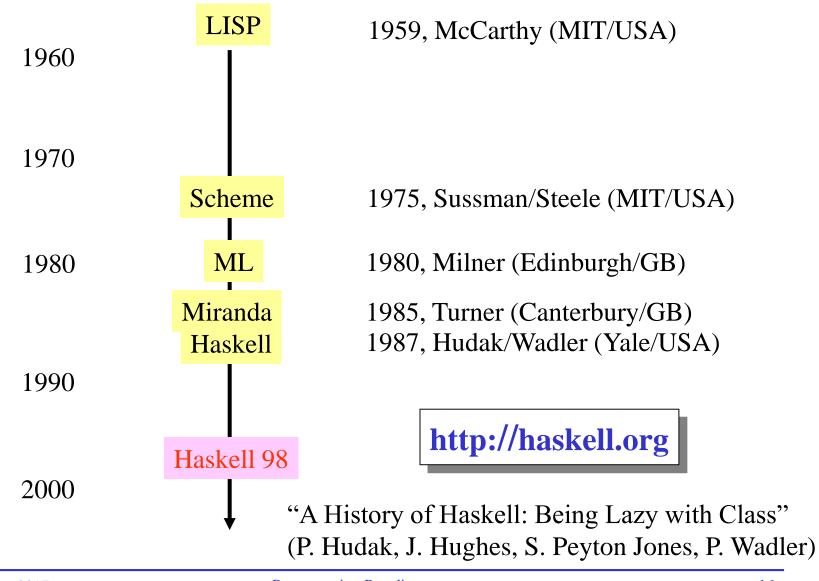
- Commercial users:
 - in banking sector (trading, quantitative analysis), e.g., Barclays Capital, Jane Street Capital, Standard Chartered Bank, McGraw Hill Financial, ...
 - in communication/web services, e.g., Ericsson, Facebook, Google
 - hardware design/verification, e.g., Intel, Bluespec, Antiope
 - system-level development, e.g., Microsoft
 - high assurance software, e.g., Galois

http://cufp.org/

http://groups.google.co.uk/group/cu-lp

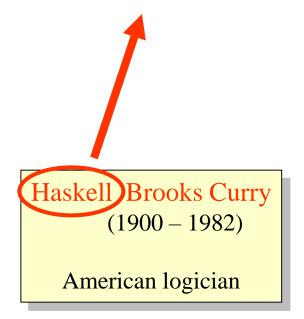
- "Non-academic" languages:
 - for special applications, e.g., Erlang (Ericsson), reFLect (Intel)
 - for general purposes, e.g., F# (Microsoft)
 - influence on mainstream languages, e.g., Java, C#, and "even" Visual Basic (generally: LINQ framework)

Important functional languages in historic overview



What does the name "Haskell" stand for?

- Programming languages are often named via acronyms (e.g., COBOL, FORTRAN, BASIC, ...)
- But the name "Haskell" is derived from a person:



- Text books (for example):
 - R. Bird:

Introduction to Functional Programming using Haskell Prentice Hall, 1998

- M. Block, A. Neumann: Haskell-Intensivkurs Springer-Verlag, 2011
- P. Hudak:

The Haskell School of Expression Cambridge University Press, 2000

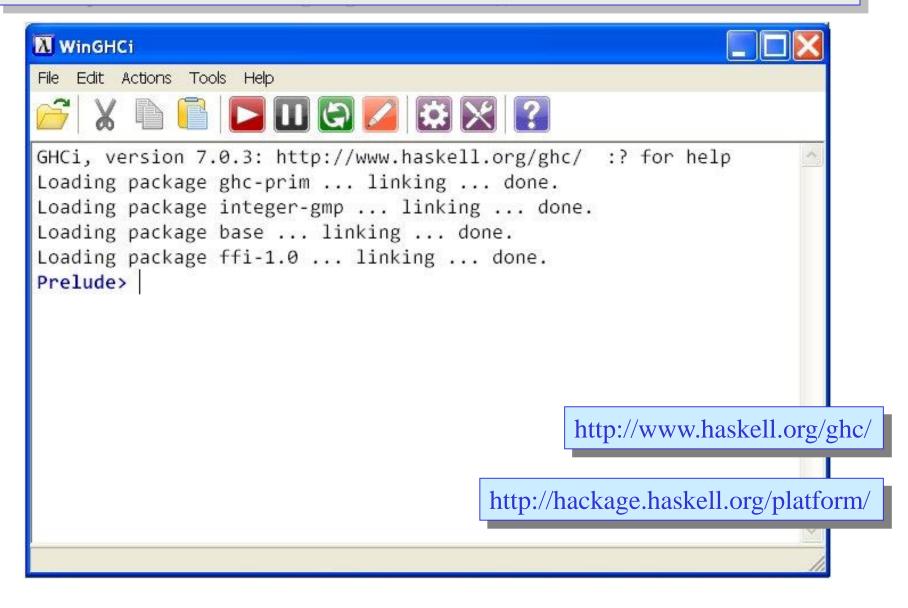
- G. Hutton:
 - Programming in Haskell Cambridge University Press, 2007
- S. Thompson:

Haskell – The Craft of Functional Programming Addison Wesley, 2011

• Introductory article:

P. Hudak, J. Peterson, J. Fasel: A Gentle Introduction to Haskell (haskell.org, 1999)

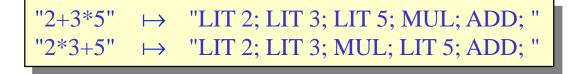
The implementation we are going to use: GHC(i)



Programming Paradigms

Examples of DSLs embedded in Haskell

• Suppose we want to compile arithmetic expressions into "machine code", for example thus:



- First we need to describe the structure of (valid) expressions.
- For example by means of a formal grammar (say, a BNF):

$$\begin{array}{ll} \langle Expr \rangle & ::= \langle Term \rangle `+` \langle Expr \rangle \mid \langle Term \rangle \\ \langle Term \rangle & ::= \langle Factor \rangle `*` \langle Term \rangle \mid \langle Factor \rangle \\ \langle Factor \rangle & ::= \langle Nat \rangle \mid `(` \langle Expr \rangle `)` \end{array}$$

• ... and now we could (in a "conventional" programming language) develop/implement an algorithm for parsing according to this grammar (or any grammar).

• It would be more attractive to use the available specification

$$\begin{array}{ll} \langle Expr \rangle & ::= \langle Term \rangle `+' \langle Expr \rangle \mid \langle Term \rangle \\ \langle Term \rangle & ::= \langle Factor \rangle `*' \langle Term \rangle \mid \langle Factor \rangle \\ \langle Factor \rangle & ::= \langle Nat \rangle \mid `(` \langle Expr \rangle `)' \end{array}$$

and consider it, as directly as possible, as a "program" itself.

• Actually quite close:

• Trying out:

> parse expr "2*3+5" ADD (MUL (LIT 2) (LIT 3)) (LIT 5)

• To get the actually desired output:

```
data Expr = LIT Int | ADD Expr Expr | MUL Expr Expr

instance Show Expr where

show (LIT n) = "LIT " ++ show n ++ "; "

show (ADD e1 e2) = show e1 ++ show e2 ++ "ADD; "

show (MUL e1 e2) = show e1 ++ show e2 ++ "MUL; "
```

• Then indeed:

> parse expr "2*3+5"
LIT 2; LIT 3; MUL; LIT 5; ADD;

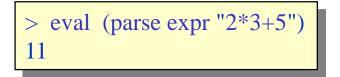
• Alternatively, also possible to, e.g., directly compute the result:

eval (LIT n) = n eval (ADD e1 e2) = eval e1 + eval e2 eval (MUL e1 e2) = eval e1 * eval e2

• Alternatively, also possible to, e.g., directly compute the result:

```
eval (LIT n) = n
eval (ADD e1 e2) = eval e1 + eval e2
eval (MUL e1 e2) = eval e1 * eval e2
```

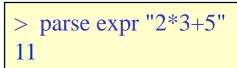
• Then, for example:



• Or even evaluation directly while parsing:

expr = ((+) <\$> term <* char '+' <*> expr) ||| term term = ((*) <\$> factor <* char '*' <*> term) ||| factor factor = nat ||| (char '(' *> expr <* char ')')

• Since then:



Another domain: describing graphics with "gloss"

- A simple library (install instructions will be given with exercises).
- Basic concepts:

Float, String, Path, Color, Picture			
text	:: String \rightarrow Picture		
line	:: Path \rightarrow Picture		
polygon	:: Path \rightarrow Picture		
arc	:: Float \rightarrow Float \rightarrow Float \rightarrow Picture		
circle	:: Float \rightarrow Picture		
color	:: Color \rightarrow Picture \rightarrow Picture		
translate	:: Float \rightarrow Float \rightarrow Picture \rightarrow Picture		
rotate	:: Float \rightarrow Picture \rightarrow Picture		
scale	:: Float \rightarrow Float \rightarrow Picture \rightarrow Picture		
pictures	:: [Picture] \rightarrow Picture		

Another domain: describing graphics with "gloss"

• Use in a concrete "program":

```
module Main (main) where
import Graphics.Gloss
main = display (InWindow "Example" (100, 100) (0, 0)) white scene
scene = pictures
    [
    circleSolid 20
    , translate 25 0 (color red (polygon [(0, 0), (10, -5), (10, 5)]))
   ]
```

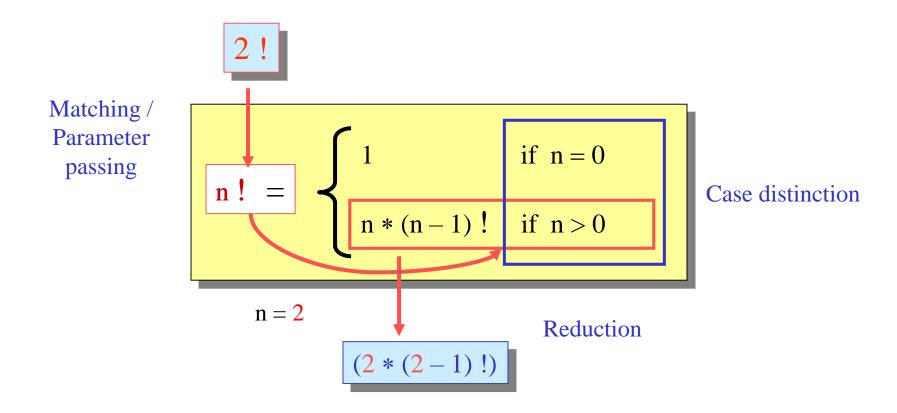
• Let's play a bit. ...

Programming Paradigms

Haskell Basics/Syntax

The principle of functional programming

Specifications:Function definitionsOperationalisation:Evaluation of expressions (syntactic reduction)

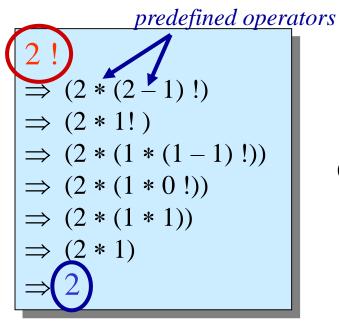


The principle of functional programming

"Let the symbols do the work." Leibniz/Dijkstra

Specification ("program") ≡ Function definition(s)

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n * (n-1)! & \text{if } n > 0 \end{cases}$$

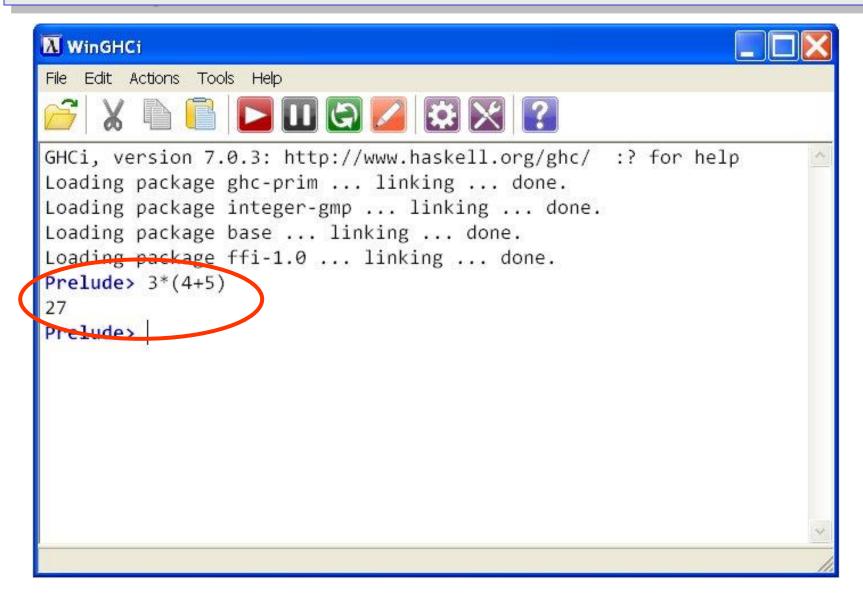


Input: term/expression to be evaluated

(repeated) function application

Output: resulting value

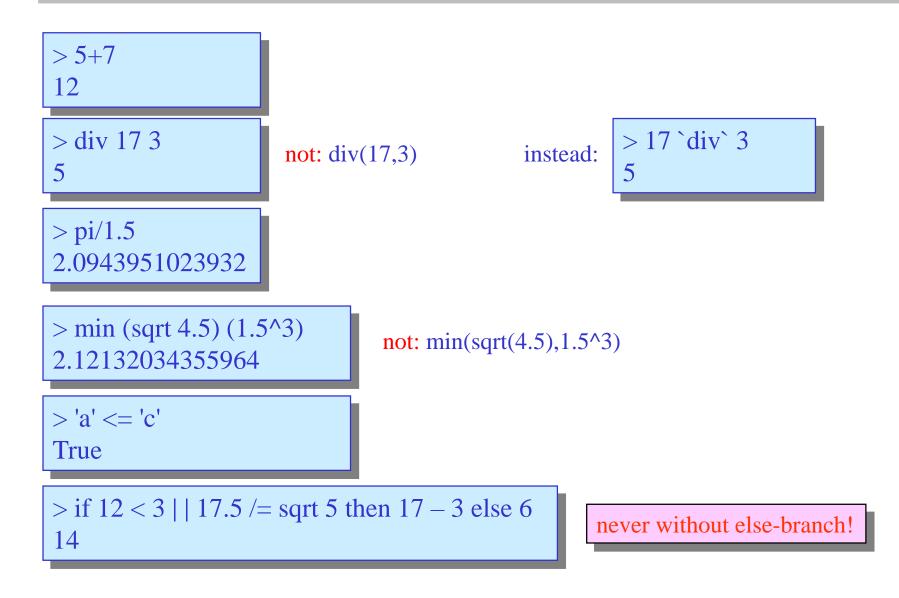
GHCi as simple calculator



Basic types, operators and functions

- Int, Integer:
 - the integer numbers (-12, 0, 42, ...)
 - operators: +, -, *, ^
 - functions: div, mod, min, max, ...
 - comparisons: ==, /=, <, <=, >, >=
- Float, Double:
 - the floating point numbers (-3.7, pi, ...)
 - operators: +, –, *, /
 - functions: sqrt, log, sin, min, max, ...
 - comparisons: ...
- Bool:
 - the Boolean values (True, False)
 - operators: &&, ||
 - functions: not; comparisons: ...
- Char:
 - individual characters ('a', 'b', '\n', ...)
 - functions: succ, pred; comparisons: ...

Evaluating simple expressions



More complex types, expressions and values

- Lists:
 - [Int] for [] or [-12, 0, 42]
 - [Bool] for [] or [False, True, False]
 - [[Int]] for [[3, 4], [], [6, -2]]
 - ...
 - operators: :, ++, !!
 - functions: head, tail, last, null, ...
- Character sequences:
 - String = [Char]
 - special notation: "" for [] and "abcd" for ['a', 'b', 'c', 'd']
- Tuples:
 - (Int, Int) for (3, 5) and (0, -4)
 - (Int, String, Bool) for (3, "abc", False)
 - ((Int, Int), Bool, [Int]) for ((0, -4), True, [1, 2, 3])
 - [(Bool, Int)] for [(False, 3), (True, -4), (True, 42)]
 - ...
 - functions: fst and snd on pairs

> (3 – 4, snd (head [('a', 17), ('c', 3)])) (–1, 17)

>3:[-12, 0, 42]

[1.5, 3.7, 4.5, 2.3]

> [1.5, 3.7] ++ [4.5, 2.3]

> [False, True, False] !! 1

[3, -12, 0, 42]

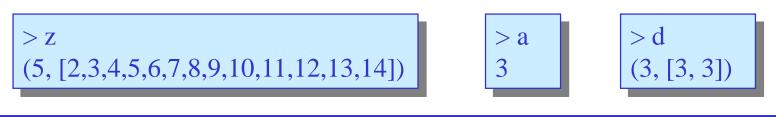
True

Declaration of values

• In a file:

All these are $\mathbf{x} = 7$ declarations, y = 2 * xnot valuez = (mod y (x + 2), tail [1 .. y])changing assignments! a = b - cb = fst zc = head (snd z) $\mathbf{x} = \mathbf{x} + \mathbf{x}$ makes no sense! d = (a, e)e = [fst d, f]f = head e

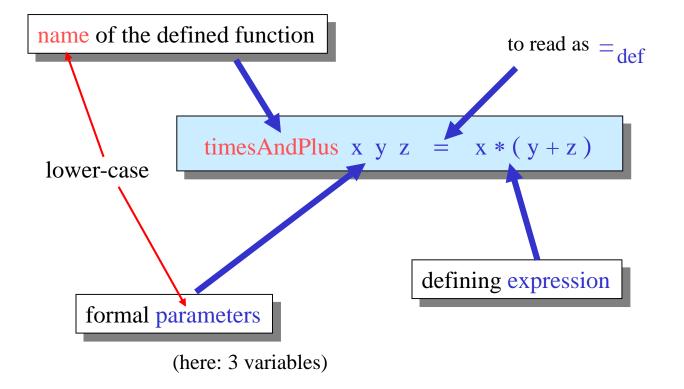
• After loading:



Optional type annotations

x , y :: Int $\mathbf{x} = \mathbf{7}$ y = 2 * xz :: (Int, [Int]) z = (mod y (x + 2), tail [1 .. y])a, b, c :: Int a = b - cb = fst zc = head (snd z)d :: (Int, [Int]) d = (a, e)...

General form of a (very simple) function definition:



Declaration of functions (with type annotations)

Recall: "if-then" in Haskell always with explicit "else"!

 $\begin{array}{l} \text{min3}:: \text{Int} \to \text{Int} \to \text{Int} \\ \text{min3 x y } z \ = \ \text{if } x < y \ \text{then} \ (\text{if } x < z \ \text{then } x \ \text{else } z) \\ & else \ (\text{if } y < z \ \text{then } y \ \text{else } z) \end{array}$

> min3 5 4 6 4

min3' :: (Int, Int, Int) \rightarrow Int min3' (x, y, z) = if x<y then (if x<z then x else z) else (if y<z then y else z)



 $min3'' :: Int \rightarrow Int \rightarrow Int \rightarrow Int$ min3'' x y z = min (min x y) z

> min3" 5 4 6 4

isEven :: Int \rightarrow Bool isEven n = (n`mod` 2) == 0 True

equality <u>test</u>!

Math-like	Haskell-like
f(x)	f x
f(x,y)	f x y
f(g(x))	f (g x)
f(x,g(y))	f x (g y)
f(x) + g(y)	f x + g y
f(a+b)	f (a + b)
f(a) + b	f a + b

More on syntax of function definitions

- On the left side of a defining equation in Haskell,
 - <u>no</u> expressions still to be evaluated, but ...
 - <u>only</u> variables and constants (and patterns, see later ...)

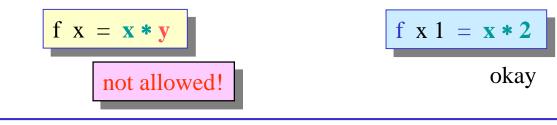
may occur:

f x
$$(2 * y) = x * y$$
 f x $1 = x * 2$

 not allowed!
 okay

- On the right side of a defining equation,
 - arbitrary expressions, <u>also</u> ones still to be evaluated, but ...
 - <u>only</u> variables from the left side (so <u>no</u> "fresh" variables)

may occur:



Summer Term 2017

More on syntax of function definitions

• In the list of formal parameters of a function definition, every variable must appear only exactly once:

$$f n 0 n = n^2$$
not allowed!

instead:

 $f n 0 m | n == m = n^2$

Function definitions: distinguishing cases (1)

More complex function definitions are build from several alternatives. Each alternative defines one case of the function:

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n * (n-1)! & \text{if } n > 0 \end{cases}$$

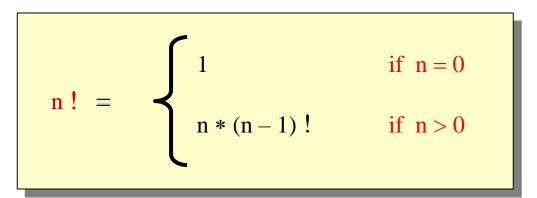
In Haskell, possible like so: fac n = if n == 0 then 1 else n * fac (n - 1)

But the "mathematical" style can also be imitated in Haskell, though the conditions are placed before the equation sign:

fac n |
$$n == 0 = 1$$

| $n > 0 = n * fac (n-1)$

Function definitions: distinguishing cases (2)

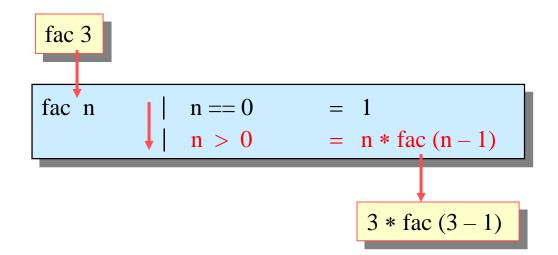




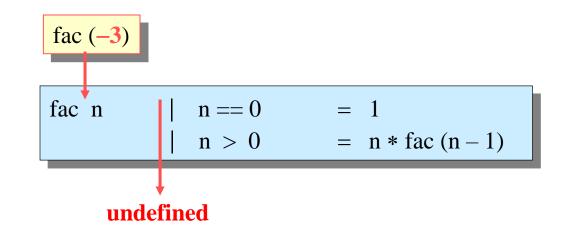
As in the mathematical notation, the guards are checked from top to bottom, until the first time a condition is satisfied.

That case is then used for reduction/continuing evaluation.

Function definitions: distinguishing cases (3)

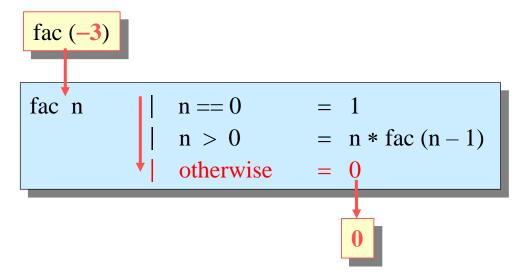


The factorial function is only partially defined: for negative input parameters, no "matching" case is found, so the result is undefined.



Function definitions: distinguishing cases (4)

Changing into a totally defined function by adding a "catch all" case using the pseudo condition otherwise:



Sometimes also helpful for abbreviation:

between x y z	$ (x \le y) \&\& (y \le z) (y \le x) (y > z)$	= True = False
between x y z	(x <= y) && (y <= z) otherwise	= True = False

Variations:

fac n |
$$n == 0 = 1$$

| $n > 0 = n * fac (n - 1)$

is essentially only an abbreviation for:

fac n |
$$n == 0 = 1$$

fac n | $n > 0 = n * fac (n - 1)$

Yet another notation variant, in which the first condition is expressed through a constant parameter:

fac 0
 = 1

 fac n

$$n > 0$$
 = $n * fac (n - 1)$

Function definitions: distinguishing cases (6)

• Apparently an important basic technique:

selection of a "matching" definition case for a function application to be evaluated

- Two selection criteria (in this order!):
 - "pattern matching" (to be considered in a bit more detail next)
 - evaluation of guard conditions

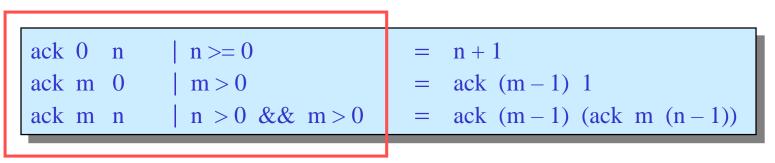
(1)	ack 0 n	n >= 0	=	n + 1
(2)	ack m 0	m > 0	=	ack (m-1) 1
(3)	ack m n	n > 0 && m > 0	=	ack $(m-1)$ (ack m $(n-1)$)

Ackermann function

ack 0 0	matches (1)
ack 2 0	matches (2)
ack 2 1	matches (3)

Order in going through cases in function definitions

• When evaluating the application ack 0 0 all three left sides would match!



- The actually defining case is the first matching one (going from top to bottom), whose guard is satisfied.
- In this way it is ensured that there is always a unique function result. (... if there is one at all!)
- For the above Ackermann function, every order of the three equations gives the same behaviour. But that is not always so! fac 0 behaves differently here:

 $\begin{cases} fac \ 0 &= 1 \\ fac \ n &= n * fac \ (n-1) \end{cases}$ 1 $fac \ fac \ f$

$$\begin{array}{rcl}
fac n &=& n * fac (n-1) \\
fac 0 &=& 1
\end{array}$$
undefined

