
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

4th Lecture

Summer Term 2017 Programming Paradigms 10

Ideal (and to some extent, history) of declarative programming

process

specification

Freeing the programmer from the necessity to explicitly plan and specify the

computation process that leads to a problem solution: “What instead of How”

???

problem

specification
Problem

Process

How?

What?

human

intelligence

artificial

“intelligence”

!!!

Solution
/

operationalisation

Summer Term 2017 Programming Paradigms 12

Characteristics of declarative specifications (vs. imperative programs)

• Declarative programs (specifications) are often:

- significantly shorter

- significantly more readable

- significantly more maintainable (and more reliable)

than their imperative “counterparts”.

• In particular functional programming languages emphasize abstractions that

exclude/constrain or (flexibly) put under control side effects like mutation etc.

(S. Peyton Jones: “Haskell is the world’s finest imperative programming language.”)

• Declarative concepts are particularly well suited for realising/embedding domain

specific languages (DSLs).

• But:

- Declarative languages are still less widespread than imperative languages.

- Development tools like IDEs etc. for working with declarative languages are

often lacking (in quantity or quality).

- Limitations to apply declarative languages are often based on (assumptions

about) not sufficiently efficient execution/operationalisation.

Summer Term 2017

Declarative programming “in the real world”

• Commercial users:

- in banking sector (trading, quantitative analysis), e.g., Barclays Capital,

Jane Street Capital, Standard Chartered Bank, McGraw Hill Financial, …

- in communication/web services, e.g., Ericsson, Facebook, Google

- hardware design/verification, e.g., Intel, Bluespec, Antiope

- system-level development, e.g., Microsoft

- high assurance software, e.g., Galois

• “Non-academic” languages:

- for special applications, e.g., Erlang (Ericsson), reFLect (Intel)

- for general purposes, e.g., F# (Microsoft)

- influence on mainstream languages, e.g., Java, C#, and “even”

Visual Basic (generally: LINQ framework)

Programming Paradigms 13

http://cufp.org/

http://groups.google.co.uk/group/cu-lp

Summer Term 2017 Programming Paradigms 16

Important functional languages in historic overview

LISP

ML

Miranda

Haskell

2000

1990

1960

1970

1980

1959, McCarthy (MIT/USA)

1980, Milner (Edinburgh/GB)

1985, Turner (Canterbury/GB)
1987, Hudak/Wadler (Yale/USA)

Scheme 1975, Sussman/Steele (MIT/USA)

Haskell 98
http://haskell.org

“A History of Haskell: Being Lazy with Class”

(P. Hudak, J. Hughes, S. Peyton Jones, P. Wadler)

Summer Term 2017 Programming Paradigms 17

What does the name “Haskell” stand for?

• Programming languages are often named via acronyms

(e.g., COBOL, FORTRAN, BASIC, …)

• But the name “Haskell” is derived from a person:

Haskell Brooks Curry
(1900 – 1982)

American logician

Summer Term 2017

• Text books (for example):

• R. Bird:

Introduction to Functional Programming using Haskell

Prentice Hall, 1998

• M. Block, A. Neumann:

Haskell-Intensivkurs

Springer-Verlag, 2011

• P. Hudak:

The Haskell School of Expression

Cambridge University Press, 2000

• G. Hutton:

Programming in Haskell

Cambridge University Press, 2007

• S. Thompson:

Haskell – The Craft of Functional Programming

Addison Wesley, 2011

• Introductory article:

P. Hudak, J. Peterson, J. Fasel: A Gentle Introduction to Haskell

(haskell.org, 1999)

Programming Paradigms 18

Literature on Haskell

Summer Term 2017 Programming Paradigms 19

The implementation we are going to use: GHC(i)

http://www.haskell.org/ghc/

http://hackage.haskell.org/platform/

Summer Term 2017 Programming Paradigms

Programming Paradigms

Examples of DSLs embedded in Haskell

Summer Term 2017 Programming Paradigms 21

Parsing and dealing with arithmetic expressions

• Suppose we want to compile arithmetic expressions into “machine code”,

for example thus:

• First we need to describe the structure of (valid) expressions.

• For example by means of a formal grammar (say, a BNF):

• … and now we could (in a “conventional” programming language) develop/implement

an algorithm for parsing according to this grammar (or any grammar).

"2+3*5"  "LIT 2; LIT 3; LIT 5; MUL; ADD; "

"2*3+5"  "LIT 2; LIT 3; MUL; LIT 5; ADD; "

⟨Expr⟩ ::= ⟨Term⟩ ‘+’ ⟨Expr⟩ | ⟨Term⟩
⟨Term⟩ ::= ⟨Factor⟩ ‘*’ ⟨Term⟩ | ⟨Factor⟩
⟨Factor⟩ ::= ⟨Nat⟩ | ‘(’ ⟨Expr⟩ ‘)’

Summer Term 2017 Programming Paradigms 22

Parsing and dealing with arithmetic expressions

• It would be more attractive to use the available specification

and consider it, as directly as possible, as a “program” itself.

• Actually quite close:

• Trying out:

expr = (ADD <$> term <* char '+' <*> expr) | | | term

term = (MUL <$> factor <* char '*' <*> term) | | | factor

factor = (LIT <$> nat) | | | (char '(' *> expr <* char ')')

> parse expr "2*3+5"

ADD (MUL (LIT 2) (LIT 3)) (LIT 5)

⟨Expr⟩ ::= ⟨Term⟩ ‘+’ ⟨Expr⟩ | ⟨Term⟩
⟨Term⟩ ::= ⟨Factor⟩ ‘*’ ⟨Term⟩ | ⟨Factor⟩
⟨Factor⟩ ::= ⟨Nat⟩ | ‘(’ ⟨Expr⟩ ‘)’

Summer Term 2017 Programming Paradigms 23

Parsing and dealing with arithmetic expressions

• To get the actually desired output:

• Then indeed:

• Alternatively, also possible to, e.g., directly compute the result:

data Expr = LIT Int | ADD Expr Expr | MUL Expr Expr

instance Show Expr where

show (LIT n) = "LIT " ++ show n ++ "; "

show (ADD e1 e2) = show e1 ++ show e2 ++ "ADD; "

show (MUL e1 e2) = show e1 ++ show e2 ++ "MUL; "

> parse expr "2*3+5"

LIT 2; LIT 3; MUL; LIT 5; ADD;

eval (LIT n) = n

eval (ADD e1 e2) = eval e1 + eval e2

eval (MUL e1 e2) = eval e1 * eval e2

Summer Term 2017 Programming Paradigms 24

Parsing and dealing with arithmetic expressions

• Alternatively, also possible to, e.g., directly compute the result:

• Then, for example:

• Or even evaluation directly while parsing:

> eval (parse expr "2*3+5")

11

eval (LIT n) = n

eval (ADD e1 e2) = eval e1 + eval e2

eval (MUL e1 e2) = eval e1 * eval e2

expr = ((+) <$> term <* char '+' <*> expr) | | | term

term = ((*) <$> factor <* char '*' <*> term) | | | factor

factor = nat | | | (char '(' *> expr <* char ')')

> parse expr "2*3+5"

11

• Since then:

Summer Term 2017 Programming Paradigms 25

Another domain: describing graphics with “gloss”

• A simple library (install instructions will be given with exercises).

• Basic concepts:

Float, String, Path, Color, Picture

text :: String ! Picture

line :: Path ! Picture

polygon :: Path ! Picture

arc :: Float ! Float ! Float ! Picture

circle :: Float ! Picture

…

color :: Color ! Picture ! Picture

translate :: Float ! Float ! Picture ! Picture

rotate :: Float ! Picture ! Picture

scale :: Float ! Float ! Picture ! Picture

pictures :: [Picture] ! Picture

Summer Term 2017 Programming Paradigms 26

Another domain: describing graphics with “gloss”

• Use in a concrete “program”:

• Let’s play a bit. …

module Main (main) where

import Graphics.Gloss

main = display (InWindow "Example" (100, 100) (0, 0)) white scene

scene = pictures

[

circleSolid 20

, translate 25 0 (color red (polygon [(0, 0), (10, –5), (10, 5)]))

]

Summer Term 2017 Programming Paradigms

Programming Paradigms

Haskell Basics/Syntax

Summer Term 2017

n ! =n ! =

Programming Paradigms 29

The principle of functional programming

1 if n  0

n  (n – 1) ! if n > 0

2 !

(2  (2 – 1) !)

Specifications: Function definitions

Operationalisation: Evaluation of expressions (syntactic reduction)

Matching /

Parameter

passing

n = 2

Case distinction

Reduction

Summer Term 2017 Programming Paradigms 30

The principle of functional programming

2 !
 (2  (2 – 1) !)

 (2  1!)

 (2  (1  (1 – 1) !))

 (2  (1  0 !))

 (2  (1  1))

 (2  1)

 2

Specification (“program”) 

Function definition(s)

Input: term/expression to be evaluated

Output: resulting value

(repeated) function application

predefined operators

n ! =

1 if n  0

n  (n – 1) ! if n > 0

“Let the symbols do the work.”
Leibniz/Dijkstra

Summer Term 2017 Programming Paradigms 31

GHCi as simple calculator

Summer Term 2017

Basic types, operators and functions

• Int, Integer:

– the integer numbers (–12, 0, 42, ...)

– operators: +, –, *, ^

– functions: div, mod, min, max, ...

– comparisons: ==, /=, <, <=, >, >=

• Float, Double:

– the floating point numbers (–3.7, pi, ...)

– operators: +, –, *, /

– functions: sqrt, log, sin, min, max, ...

– comparisons: …

• Bool:

– the Boolean values (True, False)

– operators: &&, | |

– functions: not; comparisons: …

• Char:

– individual characters ('a', 'b', '\n', ...)

– functions: succ, pred; comparisons: …

Programming Paradigms 32

Summer Term 2017

Evaluating simple expressions

not: div(17,3)

Programming Paradigms 33

> 5+7

12

> div 17 3

5

> 17 `div` 3

5

> pi/1.5

2.0943951023932

not: min(sqrt(4.5),1.5^3)
> min (sqrt 4.5) (1.5^3)

2.12132034355964

> 'a' <= 'c'

True

> if 12 < 3 | | 17.5 /= sqrt 5 then 17 – 3 else 6

14

instead:

never without else-branch!

Summer Term 2017

More complex types, expressions and values

• Lists:

– [Int] for [] or [–12, 0, 42]

– [Bool] for [] or [False, True, False]

– [[Int]] for [[3, 4], [], [6, –2]]

– …

– operators: :, ++, !!

– functions: head, tail, last, null, …

• Character sequences:

– String = [Char]

– special notation: "" for [] and "abcd" for ['a', 'b', 'c', 'd']

• Tuples:

– (Int, Int) for (3, 5) and (0, –4)

– (Int, String, Bool) for (3, "abc", False)

– ((Int, Int), Bool, [Int]) for ((0, –4), True, [1, 2, 3])

– [(Bool, Int)] for [(False, 3), (True, –4), (True, 42)]

– …

– functions: fst and snd on pairs

Programming Paradigms 34

> 3 : [–12, 0, 42]

[3, –12, 0, 42]

> [1.5, 3.7] ++ [4.5, 2.3]

[1.5, 3.7, 4.5, 2.3]

> [False, True, False] !! 1

True

> (3 – 4, snd (head [('a', 17), ('c', 3)]))

(–1, 17)

Summer Term 2017

Declaration of values

• In a file:

• After loading:

Programming Paradigms 35

x = 7

y = 2 * x

z = (mod y (x + 2), tail [1 .. y])

a = b – c

b = fst z

c = head (snd z)

d = (a, e)

e = [fst d, f]

f = head e

> z

(5, [2,3,4,5,6,7,8,9,10,11,12,13,14])

> a

3

> d

(3, [3, 3])

All these are

declarations,

not value-

changing

assignments!

x = x + 1

makes no sense!

Summer Term 2017

Optional type annotations

Programming Paradigms 36

x , y :: Int

x = 7

y = 2 * x

z :: (Int, [Int])

z = (mod y (x + 2), tail [1 .. y])

a , b , c :: Int

a = b – c

b = fst z

c = head (snd z)

d :: (Int, [Int])

d = (a, e)

...

Summer Term 2017 Programming Paradigms 37

Function definitions in Haskell

timesAndPlus x y z  x  (y + z)

General form of a (very simple) function definition:

= def
to read asname of the defined function

formal parameters

defining expression

(here: 3 variables)

lower-case

Summer Term 2017

Declaration of functions (with type annotations)

Programming Paradigms 39

> min3 5 4 6

4

min3'' :: Int ! Int ! Int ! Int

min3'' x y z = min (min x y) z

> min3'' 5 4 6

4

isEven :: Int ! Bool

isEven n = (n `mod` 2) == 0

> isEven 12

True

min3 :: Int ! Int ! Int ! Int

min3 x y z = if x<y then (if x<z then x else z)

else (if y<z then y else z)

> min3' (5, 4, 6)

4

Recall: “if-then” in Haskell always with explicit “else”!

min3' :: (Int, Int, Int) ! Int

min3' (x, y, z) = if x<y then (if x<z then x else z)

else (if y<z then y else z)

equality test!

Summer Term 2017

Examples: syntax for function application

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

f(g(x)) f (g x)

f(x,g(y)) f x (g y)

f(x) g(y) f x * g y

f(a+b) f (a + b)

f(a) + b f a + b

Programming Paradigms 40

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

f(g(x)) f (g x)

f(x,g(y)) f x (g y)

f(x) g(y) f x * g y

f(a+b) f (a + b)

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

f(g(x)) f (g x)

f(x,g(y)) f x (g y)

f(x) + g(y) f x + g y

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

f(g(x)) f (g x)

f(x,g(y)) f x (g y)

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

f(g(x)) f (g x)

Mathe-üblich Haskell-üblich

f(x) f x

f(x,y) f x y

Math-like Haskell-like

f(x) f x

Summer Term 2017 Programming Paradigms 42

More on syntax of function definitions

• On the left side of a defining equation in Haskell,

• no expressions still to be evaluated, but …

• only variables and constants (and patterns, see later …)

may occur:

• On the right side of a defining equation,

• arbitrary expressions, also ones still to be evaluated, but …

• only variables from the left side (so no “fresh” variables)

may occur:

f x (2 * y) = x  y f x 1 = x  2

okay

f x = x  y f x 1 = x  2

okay

not allowed!

not allowed!

Summer Term 2017 Programming Paradigms 43

More on syntax of function definitions

• In the list of formal parameters of a function definition, every variable must appear

only exactly once:

not allowed!

instead: f n 0 m | n == m = n^2f n 0 n = n^2

Summer Term 2017 Programming Paradigms 45

Function definitions: distinguishing cases (1)

More complex function definitions are build from several alternatives.

Each alternative defines one case of the function:

n ! =

1 if n  0

n  (n – 1) ! if n > 0

fac n | n == 0 = 1

| n > 0 = n  fac (n – 1)

But the “mathematical” style can also be imitated in Haskell, though the conditions

are placed before the equation sign:

fac n = if n == 0 then 1 else n * fac (n – 1)In Haskell, possible like so:

Summer Term 2017 Programming Paradigms 46

Function definitions: distinguishing cases (2)

n ! =

1 if n  0

n  (n – 1) ! if n > 0

fac n | n == 0  1

| n > 0  n  fac (n – 1)

“Guards”

Boolean expressions

As in the mathematical

notation, the guards are

checked from top to

bottom, until the first

time a condition is

satisfied.

That case is then used for

reduction/continuing

evaluation.

Summer Term 2017 Programming Paradigms 50

Function definitions: distinguishing cases (3)

fac n | n == 0  1

| n > 0  n  fac (n – 1)

fac 3

3  fac (3 – 1)

fac n | n == 0  1

| n > 0  n  fac (n – 1)

fac (3)

undefined

The factorial function is only partially defined: for negative input parameters,

no “matching” case is found, so the result is undefined.

Summer Term 2017 Programming Paradigms 51

Function definitions: distinguishing cases (4)

fac n | n == 0  1

| n > 0  n  fac (n – 1)

| otherwise  0

fac (3)

Changing into a totally defined function by adding a “catch all” case using the

pseudo condition otherwise:

0

between x y z | (x <= y) && (y <= z) = True

| (y < x) | | (y > z) = False

Sometimes also helpful for abbreviation:

between x y z | (x <= y) && (y <= z) = True

| otherwise = False

Summer Term 2017 Programming Paradigms 52

Function definitions: distinguishing cases (5)

fac n | n == 0  1

| n > 0  n  fac (n – 1)

is essentially only an abbreviation for:

fac n | n == 0  1

fac n | n > 0  n  fac (n – 1)

Yet another notation variant, in which the first condition is expressed through a

constant parameter:

fac 0  1

fac n | n > 0  n  fac (n – 1)

Variations:

Summer Term 2017 Programming Paradigms 53

Function definitions: distinguishing cases (6)

ack 0 n | n >= 0  n + 1

ack m 0 | m > 0  ack (m – 1) 1

ack m n | n > 0 && m > 0  ack (m – 1) (ack m (n – 1))

• Apparently an important basic technique:

selection of a “matching” definition case for a function application

to be evaluated

• Two selection criteria (in this order!):

- “pattern matching” (to be considered in a bit more detail next)

- evaluation of guard conditions

(1)

(2)

(3)

ack 0 0 matches (1)

ack 2 0 matches (2)

ack 2 1 matches (3)

Ackermann function

Summer Term 2017 Programming Paradigms 54

Order in going through cases in function definitions

ack 0 n | n >= 0  n + 1

ack m 0 | m > 0  ack (m – 1) 1

ack m n | n > 0 && m > 0  ack (m – 1) (ack m (n – 1))

• When evaluating the application ack 0 0 all three left sides would match!

• The actually defining case is the first matching one (going from top to bottom),

whose guard is satisfied.

• In this way it is ensured that there is always a unique function result.

(… if there is one at all!)

• For the above Ackermann function, every order of the three equations gives the same

behaviour. But that is not always so! fac 0 behaves differently here:

fac 0  1

fac n  n  fac (n – 1)

fac n  n  fac (n – 1)

fac 0  1 1 undefined

Summer Term 2017 Programming Paradigms 59

Pattern matching: principle

Rules of pattern matching:

• prerequisite: identical function name

• constants match

• themselves (e.g., 1  1)

• every variable (e.g., 1  n)

• complex expressions match

• every variable (e.g., (fib 3)  x)

• the specific constant that denotes their function result

(e.g., (fib 4)  5)

• tuples match

• every variable, and tuples of same length if components match as well

(e.g., (1, False, fib 4)  (1, x, 5))

• …

concrete application

left side of a definition

> ack 0 (ack 2 1)

ack 0 n | . . . = . . .

pattern matching

enforces evaluation!

