
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

5th Lecture

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 62

fac :: Int ! Int

fac n = if n == 0 then 1 else n * fac (n – 1)

> fac 5

120

sumsquare :: Int ! Int

sumsquare i = if i == 0 then 0 else i * i + sumsquare (i – 1)

> sumsquare 4

30

Computation by step-wise evaluation:

> sumsquare 2

= if 2 == 0 then 0 else 2 * 2 + sumsquare (2 – 1)

= 2 * 2 + sumsquare (2 – 1)

= 4 + sumsquare (2 – 1)

= 4 + if (2 – 1) == 0 then 0 else …

= 4 + (1 * 1 + sumsquare (1 – 1))

= 4 + (1 + sumsquare (1 – 1))

= 4 + (1 + if (1 – 1) == 0 then 0 else …)

= 4 + (1 + 0)

= 5

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 63

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 64

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 65

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 66

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 67

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 68

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 69

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])

= (3, [3, head [3, head e]])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 70

a = 3

d = (a, e)

e = [fst d, f]

f = head e

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])

= (3, [3, head [3, head e]])

= (3, [3, 3])

Summer Term 2017

Haskell evaluation semantics: on-demand (lazy evaluation)

Programming Paradigms 71

a = 3

d = (a, e)

e = [fst d, f]

f = head e

d

a

e

f,

Summer Term 2017 Programming Paradigms 72

Pattern matching “strategies”

• Examples on Boolean values:

not False = True

not True = False

True && True = True

True && False = False

False && True = False

False && False = False

• Somewhat more compact:

not False = True

not _ = False

True && True = True

_ && _ = False

Yes, for some inputs quite drastically!
False && (ack 4 2 > 0)

• But more efficient?

anonymous variables

Summer Term 2017 Programming Paradigms 73

Pattern matching “strategies”

• Examples on Boolean values:

not False = True

not True = False

True && True = True

True && False = False

False && True = False

False && False = False

• Somewhat more compact:

not False = True

not _ = False

True && True = True

_ && _ = False

b && True = b

_ && _ = False

• Not possible:

b && b = b

_ && _ = False

another variant:

Yes, for some inputs!• But more efficient?

Matching

from left

to right!

Summer Term 2017 Programming Paradigms 74

Alternative syntax (and consideration of scoping!)

• Explicit case-expressions, for example:

ifThenElse i t e = case i of

True ! t

False ! e

• Or, for example:

f x y = case (x + y, x – y) of

(z, _) | z > 0 ! y

(0, x) ! x + y

• What do you think is the result of the following call of this function?

> f 10 (–10)

Summer Term 2017 Programming Paradigms

Programming Paradigms

Elementary dealing with lists in Haskell

Summer Term 2017 Programming Paradigms 76

To make pattern matching more interesting: working on lists

• Haskell lists: sequences of elements of same type (homogeneous data structure)

• Syntax: list elements are enclosed in square brackets.

• Contrary to what many examples in the lecture might suggest,

lists are in practice often not the data structure one should use!

(Instead, user defined data types, or types from libraries like

Data.ByteString, Data.Array, Data.Map, …)

[1, 2, 3] list of integers (type: Int)

['a', 'b', 'c'] list of characters (type: Char)

[] empty list (of any type)

[[1,2], [], [2]] list of integer lists

[[1,2], 'a', 3] not a valid list (different element types)

Summer Term 2017 Programming Paradigms 77

Tree view on lists

Internally, lists are represented as certain binary trees, whose leaves are annotated

with the individual list elements:

[1, 2, 3]

1

2

3 []

Every (finite) list is terminated

by an occurrence of empty list.

(pronounced: “nil”)

Summer Term 2017 Programming Paradigms 78

The list constructor

• Elementary constructor (“operator” for constructing) of lists:

(pronounced: “cons”)

• The constructor “:” serves to extend a given list by an element, which is inserted

at the head of the list:

• Alternative notation for lists (analogous to tree view):

> 4 : [1, 2, 3]

[4, 1, 2, 3]

:

4 [1, 2, 3]

4 : 1 : 2 : 3 : []

:

Summer Term 2017 Programming Paradigms 79

Length of a list

• Function to determine the length of a list (actually predefined):

length [] = 0

length (x : xs) = length xs 1

head element rest list

• Example for applying the length function:

> length [1, 2]

= length [2] 1

= (length [] 1) 1

= (0 1) 1

= 1 1

= 2

Summer Term 2017 Programming Paradigms 80

Pattern matching with list constructors

length (x : xs) = . . .

length [1, 2] length (1 : 2 : [])

x 1

xs 2 : []

• Pattern matching between lists and constructor expressions can only be understood

by viewing both expressions in constructor form:

• This perspective is also helpful when “recursively deconstructing” singleton lists,

as follows:

length (x : xs) = . . .

length [2] length (2 : [])

x 2

xs []

All parentheses on this

slide are mandatory!

Summer Term 2017 Programming Paradigms 81

Concatenation of lists

• Important operation for all list types: concatenating two lists

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

• Example application: > concatenation [1, 2] [3, 4]

[1, 2, 3, 4]

• Predefined as infix operator:

> [1, 2] [3, 4]

[1, 2, 3, 4]

Summer Term 2017 Programming Paradigms 82

Access to individual list elements and sublists

• Targeted access to individual elements of a list via another predefined infix

operator:

• Counting of list elements starts with 0 !

> [1, 2, 3] !! 1

2

• Access per (x : xs)-pattern of course only for non-empty lists:

(Unfortunately the source of such errors is not always so easily identified.)

tail (x : xs) = xs

> tail []

ERROR – Pattern match failure: tail []

head (x : xs) = x

> head []

ERROR – Pattern match failure: head []

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 83

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

local definition + match

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 84

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 85

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [])

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 86

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [])

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 87

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [])

= (1 : [2]) : s' : ts' where s' : ts' = [[0]]

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 88

f :: [Int] ! [[Int]]

f [] = []

f [x] = [[x]]

f (x : y : zs) = if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [])

= (1 : [2]) : s' : ts' where s' : ts' = [[0]]

= (1 : [2]) : [0] : [] = [[1, 2], [0]]

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 89

unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [] = ([], [])

unzip ((x, y) : zs) = let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

variant for local definition

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 90

unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [] = ([], [])

unzip ((x, y) : zs) = let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [] in (1 : 3 : xs', 2 : 4 : ys')

variant for local definition

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 91

unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [] = ([], [])

unzip ((x, y) : zs) = let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [] in (1 : 3 : xs', 2 : 4 : ys')

= let (xs', ys') = ([], []) in (1 : 3 : xs', 2 : 4 : ys')

variant for local definition

Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 92

unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [] = ([], [])

unzip ((x, y) : zs) = let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [] in (1 : 3 : xs', 2 : 4 : ys')

= let (xs', ys') = ([], []) in (1 : 3 : xs', 2 : 4 : ys')

= ([1, 3], [2, 4])

variant for local definition

Summer Term 2017 Programming Paradigms 93

Excurse: layout in Haskell

let { y = a b; f x = (x + y) / y }

in f c + f d

let y = a b

f x = (x + y) / y

in f c + f d

let y = a b

f x = (x + y) / y

in f c + f d

let y = a b

f x = (x + y) / y

in f c + f d

equivalently, explicit layout

implicit layout

(“offside rule”)

not equivalent,

incorrect

(analogously for other language constructs, e.g., where, case)

Summer Term 2017

Pattern matching on several arguments (and “outdated” (n + k)-patterns)

Programming Paradigms 94

drop :: Int ! [Int] ! [Int]

drop 0 xs = xs

drop n [] = []

drop (n + 1) (x : xs) = drop n xs

in Haskell 98 allowed, in Haskell 2010 not anymore!

> drop 0 [1, 2, 3]

[1, 2, 3]

> drop 5 [1, 2, 3]

[]

> drop 3 [1, 2, 3, 4, 5]

[4, 5]

Summer Term 2017

Order in pattern matching

Programming Paradigms 95

zip :: [Int] ! [Int] ! [(Int, Int)]

zip (x : xs) (y : ys) = (x, y) : zip xs ys

zip xs ys = []

> zip [1 .. 3] [10 .. 15]

[(1, 10), (2, 11), (3, 12)]

• Again as a warning, this:

is okay:

zip :: [Int] ! [Int] ! [(Int, Int)]

zip xs ys = []

zip (x : xs) (y : ys) = (x, y) : zip xs ys

> zip [1 .. 3] [10 .. 15]

[]

• But this:

is problematic:

Summer Term 2017 Programming Paradigms

Programming Paradigms

List Comprehensions

Summer Term 2017 Programming Paradigms 97

Arithmetic sequences

• A useful notation for lists of numbers:

arithmetic sequences

• Abbreviation for lists of numbers with identical step size:

> [1 .. 10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

• Other step size than 1 achieved by denoting a second element:

> [1, 3 .. 10]

[1, 3, 5, 7, 9]

• Alternative definition of the factorial function (without explicit recursion):

fac n = prod [1 .. n]

Summer Term 2017 Programming Paradigms 98

List comprehensions (1)

• Powerful and elegant language construct in Haskell:

list comprehension

• Modelled after implicit set notation in mathematics (“set of all x, such that ...”), e.g.,

{ x2 | x {1, ..., 100} (x mod 2) = 0 }

• In Haskell, analogous concept for lists:

[x^2 | x Ã [1 .. 100] , (x `mod` 2) == 0]

from “comprehensive”

Summer Term 2017 Programming Paradigms 99

List comprehensions (2)

[x^2 | x Ã [1 .. 100] , (x `mod` 2) == 0]

• A list comprehension general consists of three “ingredients”:

generator guard

• The body represents list elements and is an expression, typically containing at least

one variable, whose possible values are produced by the generator.

• The generator is an expression of the form variable Ã list, which successively binds

that variable to all elements of the list (in list order).

• The guard is a Boolean expression, which restricts the generated values to those for

which that expression gives the value True.

• Additionally possible: local definitions with let.

body

Summer Term 2017 Programming Paradigms 100

List comprehensions (3)

• The parts are optional, e.g.,

[x^2 | x Ã [1 .. 10]]

> [(x, y) | x Ã [1, 2, 3], y Ã [1 .. x]]

[(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)]

• A list comprehension may contain several variables with several generators,

e.g.,

• Every variable (that is not known from outer context) needs a generator:

[(x y) | x Ã [1, 2, 3], y Ã [1, 2, 3]]

[x ++ y | (x, y) Ã [("a", "b"), ("c", "d")]]but also

Summer Term 2017 Programming Paradigms 101

List comprehensions (4)

• The order in which generators are given influences output order:

> [(x, y) | x Ã [1, 2, 3], y Ã [4, 5]]

[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]

> [(x, y) | y Ã [4, 5], x Ã [1, 2, 3]]

[(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)]

vs.

(like nested loops)

Summer Term 2017 Programming Paradigms 102

List comprehensions (5)

> [(x, y) | x Ã [1, 2, 3], y Ã [1 .. x]]

[(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)]

• “Later” generators can depend on “earlier” ones, e.g.,

> fun [[1, 2, 3], [4, 5], [6], []]

[1, 2, 3, 4, 5, 6]

• In particular, a variable bound via a generator can itself serve as a generator source,

e.g.,

fun :: [[Int]] ! [Int]

fun xss = [x | xs Ã xss, x Ã xs]

Summer Term 2017 Programming Paradigms 103

List comprehensions (6)

> [x | x Ã [1 .. 10], even x]

[2, 4, 6, 8, 10]

• Also guards can only depend on earlier generators, e.g.,

> factors 15

[1, 3, 5, 15]

• Yet another example:

factors :: Int ! [Int]

factors n = [x | x Ã [1 .. n], n `mod` x == 0]

