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fac :: Int ! Int

fac n  =  if n == 0 then 1 else n * fac (n – 1)

> fac 5

120

sumsquare :: Int ! Int

sumsquare i =  if i == 0 then 0 else i * i + sumsquare (i – 1)

> sumsquare 4

30

Computation by step-wise evaluation:

> sumsquare 2

= if 2 == 0 then 0 else 2 * 2 + sumsquare (2 – 1)

= 2 * 2 + sumsquare (2 – 1)

= 4 + sumsquare (2 – 1)

= 4 + if (2 – 1) == 0 then 0 else …

= 4 + (1 * 1 + sumsquare (1 – 1))

= 4 + (1 + sumsquare (1 – 1))

= 4 + (1 + if (1 – 1) == 0 then 0 else …)

= 4 + (1 + 0)

= 5
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])

= (3, [3, head [3, head e]])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

> d
= (a, e)

= (3, e)

= (3, [fst d, f])

= (3, [fst (3, [fst d, f]), f])

= (3, [3, f])

= (3, [3, head e])

= (3, [3, head [3, head e]])

= (3, [3, 3])
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a = 3

d = (a, e)

e = [fst d, f]

f = head e 

d

a

e

f,
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Pattern matching “strategies”

• Examples on Boolean values:

not False =  True

not True =  False

True && True =  True

True && False =  False

False && True =  False

False && False =  False

• Somewhat more compact:

not False =  True

not _ =  False

True && True =  True

_ && _ =  False

Yes, for some inputs quite drastically!
False && (ack 4 2 > 0)

• But more efficient?  

anonymous variables
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Pattern matching “strategies”

• Examples on Boolean values:

not False =  True

not True =  False

True && True =  True

True && False =  False

False && True =  False

False && False =  False

• Somewhat more compact:

not False =  True

not _ =  False

True && True =  True

_ && _ =  False

b && True =  b

_ && _ =  False

• Not possible:

b && b =  b

_ && _ =  False

another variant:

Yes, for some inputs!• But more efficient?  

Matching 

from left 

to right!
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Alternative syntax (and consideration of scoping!)

• Explicit case-expressions, for example:

ifThenElse i t e  =  case i of

True  ! t

False ! e

• Or, for example:

f x y  =  case (x + y, x – y) of

(z, _)  | z > 0 ! y

(0, x) ! x + y

• What do you think is the result of the following call of this function?

>  f  10 (–10)
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To make pattern matching more interesting: working on lists

• Haskell lists: sequences of elements of same type (homogeneous data structure)

• Syntax: list elements are enclosed in square brackets.

• Contrary to what many examples in the lecture might suggest, 

lists are in practice often not the data structure one should use!

(Instead, user defined data types, or types from libraries like

Data.ByteString, Data.Array, Data.Map, …)

[1, 2, 3] list of integers (type: Int)

['a', 'b', 'c'] list of characters (type: Char)

[ ] empty list (of any type)

[[1,2], [ ], [2]] list of integer lists

[[1,2], 'a', 3] not a valid list (different element types)
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Tree view on lists

Internally, lists are represented as certain binary trees, whose leaves are annotated 

with the individual list elements:

[1, 2, 3]













1

2

3 [ ]

Every (finite) list is terminated

by an occurrence of empty list.

(pronounced: “nil”)
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The list constructor

• Elementary constructor (“operator” for constructing) of lists:

(pronounced: “cons”)

• The constructor “:” serves to extend a given list by an element, which is inserted

at the head of the list:

• Alternative notation for lists (analogous to tree view):

> 4 : [1, 2, 3]

[4, 1, 2, 3]

:





4 [1, 2, 3]

4 : 1 : 2 : 3 : [ ]

:
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Length of a list

• Function to determine the length of a list (actually predefined):

length [ ] =   0

length (x : xs)   =   length xs  1

head element rest list

• Example for applying the length function:

> length [1, 2] 

= length [2]   1

= (length [ ]   1)   1

= (      0          1)   1

= 1  1

= 2
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Pattern matching with list constructors

length  (x : xs)   =  . . .

length [1, 2] length  (1 : 2 : [ ])

x    1

xs  2 : [ ]

• Pattern matching between lists and constructor expressions can only be understood 

by viewing both expressions in constructor form:

• This perspective is also helpful when “recursively deconstructing” singleton lists,

as follows:

length  (x : xs)   =  . . .

length [2] length (2 : [ ]) 

x    2

xs  [ ]

All parentheses on this 

slide are mandatory!
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Concatenation of lists

• Important operation for all list types: concatenating two lists

concatenation  [ ]          ys =     ys

concatenation  (x : xs)  ys =     x : concatenation xs ys

• Example application: > concatenation [1, 2]  [3, 4]

[1, 2, 3, 4]

• Predefined as infix operator:

> [1, 2]  [3, 4]

[1, 2, 3, 4]
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Access to individual list elements and sublists

• Targeted access to individual elements of a list via another predefined infix

operator:


• Counting of list elements starts with 0 !

> [1, 2, 3] !! 1

2 

• Access per (x : xs)-pattern of course only for non-empty lists:

(Unfortunately the source of such errors is not always so easily identified.)

tail (x : xs)  =  xs

>  tail [ ]

ERROR – Pattern match failure: tail []

head (x : xs)  =  x

>  head [ ]

ERROR – Pattern match failure: head []
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f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

local definition + match
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f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])



Summer Term 2017

More complex pattern matching (and its interaction with evaluation)

Programming Paradigms 85

f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [ ])
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f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [ ])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [ ])
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f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [ ])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [ ])

= (1 : [2]) : s' : ts' where s' : ts' = [[0]]
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f :: [Int] ! [[Int]]

f [ ] =  [ ]

f [x] =  [[x]]

f (x : y : zs) =  if x <= y then (x : s) : ts else [x] : s : ts

where s : ts = f (y : zs)

Computation by step-wise evaluation:

> f [1, 2, 0]

= if 1 <= 2 then (1 : s) : ts else [1] : s : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = f (2 : [0])

= (1 : s) : ts where s : ts = [2] : s' : ts'

where s' : ts' = f (0 : [ ])

= (1 : [2]) : s' : ts' where s' : ts' = f (0 : [ ])

= (1 : [2]) : s' : ts' where s' : ts' = [[0]]

= (1 : [2]) : [0] : [ ] = [[1, 2], [0]]
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unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [ ] =  ([ ], [ ])

unzip ((x, y) : zs) =  let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [ ] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

variant for local definition
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unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [ ] =  ([ ], [ ])

unzip ((x, y) : zs) =  let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [ ] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [ ] in (1 : 3 : xs', 2 : 4 : ys')

variant for local definition
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unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [ ] =  ([ ], [ ])

unzip ((x, y) : zs) =  let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [ ] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [ ] in (1 : 3 : xs', 2 : 4 : ys')

= let (xs', ys') = ([ ], [ ]) in (1 : 3 : xs', 2 : 4 : ys')

variant for local definition
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unzip :: [(Int, Int)] ! ([Int], [Int])

unzip [ ] =  ([ ], [ ])

unzip ((x, y) : zs) =  let (xs, ys) = unzip zs in (x : xs, y : ys)

Computation by step-wise evaluation:

> unzip [(1, 2), (3, 4)]

= let (xs, ys) = unzip [(3, 4)] in (1 : xs, 2 : ys)

= let (xs, ys) = (let (xs', ys') = unzip [ ] in (3 : xs', 4 : ys')) in (1 : xs, 2 : ys)

= let (xs', ys') = unzip [ ] in (1 : 3 : xs', 2 : 4 : ys')

= let (xs', ys') = ([ ], [ ]) in (1 : 3 : xs', 2 : 4 : ys')

= ([1, 3], [2, 4])

variant for local definition
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Excurse: layout in Haskell

let { y = a  b; f x = (x + y) / y }

in f c + f d

let y = a  b

f x = (x + y) / y

in f c + f d

let y = a  b

f x = (x + y) / y

in  f c + f d

let y = a  b

f x = (x + y) / y

in  f c + f d

equivalently, explicit layout 

implicit layout

(“offside rule”)

not equivalent,

incorrect

(analogously for other language constructs, e.g., where, case)
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drop :: Int ! [Int] ! [Int]

drop 0 xs =  xs

drop n [ ] =  [ ]

drop (n + 1) (x : xs)  =  drop n xs

in Haskell 98 allowed, in Haskell 2010 not anymore!

> drop 0 [1, 2, 3]

[1, 2, 3]

> drop 5 [1, 2, 3]

[ ]

> drop 3 [1, 2, 3, 4, 5]

[4, 5]
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zip :: [Int] ! [Int] ! [(Int, Int)]

zip (x : xs) (y : ys)   =  (x, y) : zip xs ys

zip xs ys =  [ ]

> zip [1 .. 3] [10 .. 15]

[(1, 10), (2, 11), (3, 12)]

• Again as a warning, this:

is okay:

zip :: [Int] ! [Int] ! [(Int, Int)]

zip xs ys =  [ ]

zip (x : xs) (y : ys)   =  (x, y) : zip xs ys

> zip [1 .. 3] [10 .. 15]

[ ]

• But this:

is problematic:
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Arithmetic sequences

• A useful notation for lists of numbers:

arithmetic sequences

• Abbreviation for lists of numbers with identical step size:

> [ 1 .. 10 ]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

• Other step size than 1 achieved by denoting a second element:

> [ 1, 3 .. 10 ]

[1, 3, 5, 7, 9]

• Alternative definition of the factorial function (without explicit recursion):

fac n  =  prod [ 1 .. n ]
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List comprehensions (1)

• Powerful and elegant language construct in Haskell:

list comprehension

• Modelled after implicit set notation in mathematics (“set of all x, such that ...”), e.g.,

{  x2 |  x  {1, ..., 100}   (x mod 2) = 0  }

• In Haskell, analogous concept for lists:

[ x^2  |  x Ã [1 .. 100] , (x `mod` 2) == 0 ]

from “comprehensive”
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List comprehensions (2)

[ x^2 |  x Ã [1 .. 100] , (x `mod` 2) == 0 ]

• A  list comprehension general consists of three “ingredients”:

generator guard

• The body represents list elements and is an expression, typically containing at least 

one variable, whose possible values are produced by the generator.

• The generator is an expression of the form  variable Ã list, which successively binds 

that variable to all elements of the list (in list order).

• The guard is a Boolean expression, which restricts the generated values to those for 

which that expression gives the value True.

• Additionally possible: local definitions with let.

body
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List comprehensions (3)

• The parts are optional, e.g.,

[ x^2  |  x Ã [1 .. 10] ]

> [ (x, y) | x Ã [ 1, 2, 3 ], y Ã [1 .. x] ]

[ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) ]

• A list comprehension may contain several variables with several generators, 

e.g.,

• Every variable (that is not known from outer context) needs a generator:

[ (x  y) | x Ã [ 1, 2, 3 ], y Ã [ 1, 2, 3 ] ]

[ x ++ y | (x, y) Ã [ ("a", "b"), ("c", "d") ] ]but also
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List comprehensions (4)

• The order in which generators are given influences output order:

>  [ (x, y) | x Ã [ 1, 2, 3 ], y Ã [ 4, 5 ] ]

[ (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5) ]

>  [ (x, y) | y Ã [ 4, 5 ], x Ã [ 1, 2, 3 ] ]

[ (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5) ]

vs.

(like nested loops)
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List comprehensions (5)

> [ (x, y) | x Ã [ 1, 2, 3 ],  y Ã [1 .. x] ]

[ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) ]

• “Later” generators can depend on “earlier” ones, e.g.,

> fun [ [ 1, 2, 3 ], [ 4, 5 ], [ 6 ], [ ] ]

[ 1, 2, 3, 4, 5, 6 ]

• In particular, a variable bound via a generator can itself serve as a generator source,

e.g., 

fun :: [[Int]] ! [Int]

fun xss =  [ x | xs Ã xss, x Ã xs ]
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List comprehensions (6)

> [ x | x Ã [1 .. 10],  even x ]

[ 2, 4, 6, 8, 10 ]

• Also guards can only depend on earlier generators, e.g.,

> factors 15

[ 1, 3, 5, 15 ]

• Yet another example:

factors :: Int ! [Int]

factors n  =  [ x | x Ã [1 .. n], n `mod` x == 0 ]


