Programming Paradigms

Summer Term 2017

6th Lecture

Prof. Janis Voigtlander
University of Duisburg-Essen

Summer Term 2017 Programming Paradigms

Infinite lists

In Haskell there are even abbreviating notations for infinite lists.

For example:

|[1,3..]I means [1,3,5,7,9,.......]

naturals, evens, odds :: [Integer]

naturals = [1..]
evens = [2,4..]
odds [1,3..]

With this we can represent infinite series as lists, e.g.,

squares

= [n2 | n< naturals]
= [facn | n< naturals]
2:[n | n<« odds, factorsn==[1, n]]

Summer Term 2017

Programming Paradigms 106

Actually working with infinite lists

« Input of an expression that denotes an infinite list expectedly leads to
non-terminating output (needs to be stopped “by hand™!)

« However, working with finite parts of infinite lists is possible, e.g.,

> take 5 primes > primes !5
[21 31 51 71 11] 13

» That this is possible is not trivial. It is a benefit of Haskell’s on-demand evaluation
strategy, which computes the value of a (sub-)expression only if, and when, it is
absolutely required (“lazy evaluation”).

» The following expression “intuitively”” denotes a finite list, but the computation
does nevertheless not terminate:

Why 2 > [x| x ¢ squares, x <100]
y’ [1, 4,9, 16, 25, 36, 49, 64, 81,

Summer Term 2017 Programming Paradigms 107

Some more examples: variants for prime number generation

e |nstead of:

odds
factors n

primes

[1,3.]
[X | x<[1..n],n mod x==0]
2:[n | n<+ odds, factorsn==[1,n]]

» For example:

primes = 2:[n| n<«<[3,5..],isPrimen]

IsSPrimen = and[n ‘'mod t>0 | t<« candidates primes]
where candidates(p:ps) [p*p>n =[]

| otherwise = p : candidates ps

e Oralso:

primes = sieve[2..]
sieve (p:xs) = p:sieve[Xx | X+ xs,x mod p>0]

Summer Term 2017 Programming Paradigms 108

Programming Paradigms

‘ The role of recursion (and kinds of recursion) I

Summer Term 2017 Programming Paradigms

Pattern matching + recursion vs. list comprehensions

We earlier saw:

sumsquare :: Int — Int
sumsquare i = 1Ifi==0thenOelse1* i+ sumsquare (i —1)

> sumsquare 4
30

But also possible:

sumsquare :: Int — Int > sumsquare 4
30

sumsquaren = sum[i*i | i< [0..n]]

So which form is “better”?

No obvious/general answer. What could be criteria?

Maybe:
« efficiency
* readability
e “provability”

Fact: also sum, [0 .. n], ... are ultimately defined via recursive functions.

Summer Term 2017 Programming Paradigms 110

Different kinds of recursion

Structural recursion;

sum :: [Int] — Int
sum [] =0
sum (X : XS) = X+ sum xs

Also “structural” in some sense, or at least inductive:

sumsquare :: Int — Int
sumsquarei = ifi==0thenOelsei* i+ sumsquare (i—1)

General/arbitrary recursion:

digsum :: Int — Int
digsumn | n<10 =n
| otherwise let (d, m) =n divMod 10 in m + digsum d

Also: ack, ..., Quicksort, ...

Summer Term 2017 Programming Paradigms 111

Another example for general recursion

Consider Euclid’s algorithm:

@ euclid :: Int — Int — Int
euclida0 = a
euclidab|a>b = euclid(a—b)b
euclidab = euclida (b —a)
:
Yes i i i
« Loops (e.g., while) turn into recursive
functions.
a>b? o . e .
» Here even special form: tail recursion.
yes « How does this play out for verification?
a—a—»>b b=b-a

Summer Term 2017 Programming Paradigms 120

Comparison structural and general recursion

* General recursion is much more flexible!
* Algorithmic principles like “divide and conquer” can be employed.

« Some functions can provably not be implemented with structural recursion.

« Structural recursion:
* ... gives a very useful “recipe” for defining functions
* ... guarantees termination (on finite structures)
... enables very direct proofs by induction

e ... can be “packaged” as a reusable program scheme

Summer Term 2017 Programming Paradigms 121

Programming Paradigms

‘Types In Haskell I

Summer Term 2017 Programming Paradigms

Types

Important concept of Haskell, so far considered only in passing:

‘ Every expression and every function have a type. I

Notation for type assignment: double colon

e.g., 1 :: Int

Foundation: predefined base types for constants

« diverse numeric types, e.g., Integer, Rational, Float, Double
» characters: Char
« Boolean values: Bool

Additionally: various type constructors (tuples, lists, ...) for more complex types

Summer Term 2017 Programming Paradigms 124

Typing, type checking, type inference

Every expression has exactly one type, which is determined before runtime:

‘ Haskell is a strongly and statically typed language. I

Function definitions and applications are checked for type consistency:

| type checking I

In addition, Haskell offers | type inference I , 1.e., the types need not necessarily be

written down explicitly.

There is no (implicit or explicit) casting between types.

Summer Term 2017 Programming Paradigms 125

Particulars on typing of numbers

« We have already mentioned various number types: Int, Integer, Float
(and there are several further ones, for example Rational).

» Number literals can have a different concrete type depending on context
(e.g., 3::Int, 3 :: Integer, 3 :: Float, 3.0 :: Float, 3.5 :: Float, 3.5 :: Double).

» For general expressions there are overloaded conversion functions, for example:
— fromintegral :: Int — Integer, fromintegral :: Integer — Int,
fromintegral :: Int — Rational, fromlintegral :: Integer — Float, ...
— truncate :: Float — Int, truncate :: Double — Int, truncate :: Float — Integer,

.., round :: ..., ceiling:: ..., floor:: ...

: _ _ o
+ Conversions are not necessary in, for example, 3 + 4.5 or in: | T X =27 X+ 3.5

gy=fdly

f .. Int — Float
f x =2 * (fromlntegral x) + 3.5

but for example in:

Orin: 1§y =2%x+35

gy = f (fromlntegral (length "abcd")) / y

Summer Term 2017 Programming Paradigms 127

Programming Paradigms

‘ Algebraic data types I

Summer Term 2017 Programming Paradigms

Declaration of (algebraic) data types

« An important aspect of typical Haskell programs is the definition of problem specific
data types (instead of building everything from lists or so).

« To that end, one primarily uses data type declarations:

data Color = Red | Green | Blue | White | Black

type constructor data constructors

« Syntax: constructors in Haskell (both data and type constructors) generally start with
a capital letter (exception: certain symbolic forms like in the case of lists).

« Semantics: the newly defined type Color above is an enumeration type that consists
of exactly the five given values.

Summer Term 2017 Programming Paradigms 131

Declaration of (algebraic) data types

« User defined data types like

‘data Color = Red | Green | Blue | White | BIackI

can arbitrarily be used as components in other types, such as for example in
[(Color, Int)] with values e.g. [], [(Red, —5)] and [(Red, -5), (Blue, 2), (Red, 0)].

« Computation goes via pattern matching:

primaryCol :: Color — Bool
primaryCol Red True
primaryCol Green = True
primaryCol Blue True
primaryCol _ False

Summer Term 2017 Programming Paradigms 132

User defined structured types

» Itis also possible to declare new types with structure, by using a data constructor
with parameters:

|data Point = Pt (Integer, Integer) I

type data type of encased values
constructor constructor

« With such a user defined data constructor with parameters, one can then construct
structured values of one’s own type:

| Pt (1, 2) :: Point I

« |t is permissible to use the same name for a type constructor and for a data constructor
(e.g., twice Pt here), even if the data constructor does not belong to the same type.

Summer Term 2017 Programming Paradigms 133

User defined structured types

« A somewhat more complex example:

data Date = Date Int Int Int

data Time = Hour Int

data Connection = Train Date Time Time |
Flight String Date Time Time

« Possible values for Connection:
- Train (Date 20 04 2011) (Hour 11) (Hour 14)
- Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

« Computation via pattern matching:

travelTime :: Connection — Int
travelTime (Flight __ (Hour d) (Houra)) =a—d + 2
travelTime (Train _ (Hour d) (Houra)) =a-d+1

Summer Term 2017 Programming Paradigms 134

User defined structured types

 Internal representation for: Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

C#15
v C# |7
I > |0
‘< ™ s
I#/9
v
‘ I#[10
Date |2
' o T e
Flight|O I#|11
‘ | Hour | 3
R I#12
"

Hour|4.__,_1#|13

Summer Term 2017 Programming Paradigms 135

Data constructors as special functions

For:
data Date = Date Int Int Int
data Time = Hour Int
data Connection = Train Date Time Time |
Flight String Date Time Time
we get:

>t Date

Date :: Int — Int — Int — Date

> 't Hour

Hour :: Int — Time

> :t Train

Train :: Date — Time — Time — Connection

>t Flight

Flight :: String — Date — Time — Time — Connection

Summer Term 2017 Programming Paradigms 136

Recursive data types

Like function definitions, data type declarations can also be recursive.

Maybe the simplest example:

| data Nat = Zero | Succ Nat I
Values of that type Nat:

Zero, Succ Zero, Succ (Succ Zero), ...

Computation via pattern matching:

add :: Nat — Nat — Nat
add Zero m=m
add (Succ n) m = Succ (add n m)

Summer Term 2017 Programming Paradigms 137

Recursive data types

 The definition:

add :: Nat — Nat — Nat
add Zero m=m
add (Succ n) m = Succ (add n m)

maybe reminds of:

concatenation [] &

concatenation (X : Xs) ys . concatenation Xs ys

» Indeed, lists are internally defined as, essentially:

data [Bool] = [] | (;) Bool [Bool] I

Summer Term 2017 Programming Paradigms 138

Recursive data types

A somewhat more complex example:

| data Expr = Lit Int| Add Expr Expr | Mul Expr Expr I

Possible values:

Lit 42, Add (Lit 2) (Lit 7) , Mul (Lit 3) (Add (Lit 4) (Lit 0)), ...

A “mini interpreter” :

eval :: Expr — Int
eval (Litn) =n
eval (Add e, e,)

eval (Mule;e,)

= eval e, +evale,
= eval e; *eval e,

Summer Term 2017

Programming Paradigms

139

Recursive data types

Or, general binary trees:

| data Tree = Leaf Int| Node Tree Int Tree I

with data constructors typed as follows:

>t Leaf
Leaf :: Int — Tree

> :t Node
Node :: Tree — Int — Tree — Tree

and (to be defined) functions for “flattening”, prefix traversal, postfix traversal, ...

Summer Term 2017 Programming Paradigms 140

Mutually recursive data types

« Finally, a somewhat artificial example:
dataTl = AT2|E
dataT2 = BT1

E,ABE),A(B(A(BE))),A(B(A(B(A(BE))))), ...

e Possible values for T1:

e Possible values for T2:

BE,B(A(BE)),B(AB(A(BE)), ...

« Computation: as:: Tl — Int

as (At)=1+as't
asE =0

as':: T2 — Int
as' (Bt)=ast

Summer Term 2017 Programming Paradigms

141

Type synonyms

« Type synonyms give new names for already existing types:

|type String = [Char] I

— In contrast to data, no constructors, no alternatives:
also, really just a new name, not a new type

— can be nested:

type Pos = (Int, Int)
type Trans = Pos — Pos

but not recursive!

Summer Term 2017 Programming Paradigms

142

