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Infinite lists

In Haskell there are even abbreviating notations for infinite lists.

For example:

|[1,3..]I means [1,3,5,7,9,....... ]

naturals, evens, odds :: [Integer]

naturals = [1..]
evens = [2,4..]
odds [1,3..]

With this we can represent infinite series as lists, e.g.,

squares

= [ n2 | n< naturals ]
= [facn | n< naturals]
2:[n | n<« odds, factorsn==[1, n] ]
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Actually working with infinite lists

« Input of an expression that denotes an infinite list expectedly leads to
non-terminating output (needs to be stopped “by hand™!)

« However, working with finite parts of infinite lists is possible, e.g.,

> take 5 primes > primes !5
[21 31 51 71 11] 13

» That this is possible is not trivial. It is a benefit of Haskell’s on-demand evaluation
strategy, which computes the value of a (sub-)expression only if, and when, it is
absolutely required (“lazy evaluation”).

» The following expression “intuitively”” denotes a finite list, but the computation
does nevertheless not terminate:

Why 2 > [ x| x ¢ squares, x <100 ]
y’ [1, 4,9, 16, 25, 36, 49, 64, 81,
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Some more examples: variants for prime number generation

e |nstead of:

odds
factors n

primes

[1,3.]
[X | x<[1..n],n mod x==0]
2:[n | n<+ odds, factorsn==[1,n]]

» For example:

primes = 2:[n| n<«<[3,5..],isPrimen]

IsSPrimen = and[n ‘'mod t>0 | t<« candidates primes ]
where candidates(p:ps) [ p*p>n =[]

| otherwise = p : candidates ps

e Oralso:

primes = sieve[2..]
sieve (p:xs) = p:sieve[Xx | X+ xs,x mod p>0]
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Programming Paradigms

‘ The role of recursion (and kinds of recursion) I
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Pattern matching + recursion vs. list comprehensions

We earlier saw:

sumsquare :: Int — Int
sumsquare i = 1Ifi==0thenOelse1* i+ sumsquare (i —1)

> sumsquare 4
30

But also possible:

sumsquare :: Int — Int > sumsquare 4
30

sumsquaren = sum[i*i | i< [0..n]]

So which form is “better”?

No obvious/general answer. What could be criteria?

Maybe:
« efficiency
* readability
e “provability”

Fact: also sum, [0 .. n], ... are ultimately defined via recursive functions.
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Different kinds of recursion

Structural recursion;

sum :: [Int] — Int
sum [ ] =0
sum (X : XS) = X+ sum xs

Also “structural” in some sense, or at least inductive:

sumsquare :: Int — Int
sumsquarei = ifi==0thenOelsei* i+ sumsquare (i—1)

General/arbitrary recursion:

digsum :: Int — Int
digsumn | n<10 =n
| otherwise let (d, m) =n divMod 10 in m + digsum d

Also: ack, ..., Quicksort, ...
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Another example for general recursion

Consider Euclid’s algorithm:

@ euclid :: Int — Int — Int
euclida0 = a
euclidab|a>b = euclid(a—b)b
euclidab = euclida (b —a)
:
Yes i i i
« Loops (e.g., while) turn into recursive
functions.
a>b? o . e .
» Here even special form: tail recursion.
yes « How does this play out for verification?
a—a—»>b b=b-a
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Comparison structural and general recursion

* General recursion is much more flexible!
* Algorithmic principles like “divide and conquer” can be employed.

« Some functions can provably not be implemented with structural recursion.

« Structural recursion:
* ... gives a very useful “recipe” for defining functions
* ... guarantees termination (on finite structures)
... enables very direct proofs by induction

e ... can be “packaged” as a reusable program scheme
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Programming Paradigms

‘Types In Haskell I
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Types

Important concept of Haskell, so far considered only in passing:

‘ Every expression and every function have a type. I

Notation for type assignment: double colon

e.g., 1 :: Int

Foundation: predefined base types for constants

« diverse numeric types, e.g., Integer, Rational, Float, Double
» characters: Char
« Boolean values: Bool

Additionally: various type constructors (tuples, lists, ...) for more complex types
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Typing, type checking, type inference

Every expression has exactly one type, which is determined before runtime:

‘ Haskell is a strongly and statically typed language. I

Function definitions and applications are checked for type consistency:

| type checking I

In addition, Haskell offers | type inference I , 1.e., the types need not necessarily be

written down explicitly.

There is no (implicit or explicit) casting between types.
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Particulars on typing of numbers

« We have already mentioned various number types: Int, Integer, Float
(and there are several further ones, for example Rational).

» Number literals can have a different concrete type depending on context
(e.g., 3::Int, 3 :: Integer, 3 :: Float, 3.0 :: Float, 3.5 :: Float, 3.5 :: Double).

» For general expressions there are overloaded conversion functions, for example:
— fromintegral :: Int — Integer, fromintegral :: Integer — Int,
fromintegral :: Int — Rational, fromlintegral :: Integer — Float, ...
— truncate :: Float — Int, truncate :: Double — Int, truncate :: Float — Integer,

.., round :: ..., ceiling:: ..., floor:: ...

: _ _ o
+ Conversions are not necessary in, for example, 3 + 4.5 or in: | T X =27 X+ 3.5

gy=fdly

f .. Int — Float
f x =2 * (fromlntegral x) + 3.5

but for example in:

Orin: 1§y =2%x+35

gy = f (fromlntegral (length "abcd")) / y
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Programming Paradigms

‘ Algebraic data types I
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Declaration of (algebraic) data types

« An important aspect of typical Haskell programs is the definition of problem specific
data types (instead of building everything from lists or so).

« To that end, one primarily uses data type declarations:

data Color = Red | Green | Blue | White | Black

type constructor data constructors

« Syntax: constructors in Haskell (both data and type constructors) generally start with
a capital letter (exception: certain symbolic forms like in the case of lists).

« Semantics: the newly defined type Color above is an enumeration type that consists
of exactly the five given values.
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Declaration of (algebraic) data types

« User defined data types like

‘data Color = Red | Green | Blue | White | BIackI

can arbitrarily be used as components in other types, such as for example in
[ (Color, Int) ] with values e.g. [ ], [ (Red, —5) ] and [ (Red, -5), (Blue, 2), (Red, 0) ].

« Computation goes via pattern matching:

primaryCol :: Color — Bool
primaryCol Red True
primaryCol Green = True
primaryCol Blue True
primaryCol _ False
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User defined structured types

» Itis also possible to declare new types with structure, by using a data constructor
with parameters:

|data Point = Pt ( Integer, Integer) I

type data type of encased values
constructor constructor

« With such a user defined data constructor with parameters, one can then construct
structured values of one’s own type:

| Pt (1, 2) :: Point I

« |t is permissible to use the same name for a type constructor and for a data constructor
(e.g., twice Pt here), even if the data constructor does not belong to the same type.
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User defined structured types

« A somewhat more complex example:

data Date = Date Int Int Int

data Time = Hour Int

data Connection = Train Date Time Time |
Flight String Date Time Time

« Possible values for Connection:
- Train (Date 20 04 2011) (Hour 11) (Hour 14)
- Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

« Computation via pattern matching:

travelTime :: Connection — Int
travelTime (Flight __ (Hour d) (Houra)) =a—d + 2
travelTime (Train _ (Hour d) (Houra)) =a-d+1
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User defined structured types

 Internal representation for: Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

C#15
v C# |7
I > |0
‘< ™ s
I#/9
v
‘ I#[10
Date |2
' o T e
Flight|O I#|11
‘ | Hour | 3
R I#12
"

Hour|4.__,_1#|13
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Data constructors as special functions

For:
data Date = Date Int Int Int
data Time = Hour Int
data Connection = Train Date Time Time |
Flight String Date Time Time
we get:

>t Date

Date :: Int — Int — Int — Date

> 't Hour

Hour :: Int — Time

> :t Train

Train :: Date — Time — Time — Connection

>t Flight

Flight :: String — Date — Time — Time — Connection
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Recursive data types

Like function definitions, data type declarations can also be recursive.

Maybe the simplest example:

| data Nat = Zero | Succ Nat I
Values of that type Nat:

Zero, Succ Zero, Succ (Succ Zero), ...

Computation via pattern matching:

add :: Nat — Nat — Nat
add Zero m=m
add (Succ n) m = Succ (add n m)
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Recursive data types

 The definition:

add :: Nat — Nat — Nat
add Zero m=m
add (Succ n) m = Succ (add n m)

maybe reminds of:

concatenation [ ] &

concatenation (X : Xs) ys . concatenation Xs ys

» Indeed, lists are internally defined as, essentially:

data [Bool] = [] | (;) Bool [Bool] I
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Recursive data types

A somewhat more complex example:

| data Expr = Lit Int| Add Expr Expr | Mul Expr Expr I

Possible values:

Lit 42, Add (Lit 2) (Lit 7) , Mul (Lit 3) (Add (Lit 4) (Lit 0)), ...

A “mini interpreter” :

eval :: Expr — Int
eval (Litn) =n
eval (Add e, e,)

eval (Mule;e,)

= eval e, +evale,
= eval e; *eval e,
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Recursive data types

Or, general binary trees:

| data Tree = Leaf Int| Node Tree Int Tree I

with data constructors typed as follows:

>t Leaf
Leaf :: Int — Tree

> :t Node
Node :: Tree — Int — Tree — Tree

and (to be defined) functions for “flattening”, prefix traversal, postfix traversal, ...
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Mutually recursive data types

« Finally, a somewhat artificial example:
dataTl = AT2|E
dataT2 = BT1

E,ABE),A(B(A(BE))),A(B(A(B(A(BE))))), ...

e Possible values for T1:

e Possible values for T2:

BE,B(A(BE)),B(AB(A(BE)), ...

«  Computation: as:: Tl — Int

as (At)=1+as't
asE =0

as':: T2 — Int
as' (Bt)=ast
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Type synonyms

« Type synonyms give new names for already existing types:

|type String = [Char] I

— In contrast to data, no constructors, no alternatives:
also, really just a new name, not a new type

— can be nested:

type Pos = (Int, Int)
type Trans = Pos — Pos

but not recursive!
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