
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

6th Lecture

Summer Term 2017 Programming Paradigms 106

Infinite lists

• In Haskell there are even abbreviating notations for infinite lists.

[1, 3 ..] means [1, 3, 5, 7, 9,]

• With this we can represent infinite series as lists, e.g.,

squares = [n^2 | n Ã naturals]

facs = [fac n | n Ã naturals]

primes = 2 : [n | n Ã odds, factors n == [1, n]]

• For example:

naturals, evens, odds :: [Integer]

naturals = [1 ..]

evens = [2, 4 ..]

odds = [1, 3 ..]

Summer Term 2017 Programming Paradigms 107

Actually working with infinite lists

• Input of an expression that denotes an infinite list expectedly leads to

non-terminating output (needs to be stopped “by hand”!)

• However, working with finite parts of infinite lists is possible, e.g.,

> take 5 primes

[2, 3, 5, 7, 11]

> [x | x Ã squares, x < 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81,

• That this is possible is not trivial. It is a benefit of Haskell’s on-demand evaluation

strategy, which computes the value of a (sub-)expression only if, and when, it is

absolutely required (“lazy evaluation”).

• The following expression “intuitively” denotes a finite list, but the computation

does nevertheless not terminate:

> primes !! 5

13

Why ?

Summer Term 2017 Programming Paradigms 108

Some more examples: variants for prime number generation

• Instead of:

odds = [1, 3 ..]

factors n = [x | x Ã [1 .. n], n `mod` x == 0]

primes = 2 : [n | n Ã odds, factors n == [1, n]]

• For example:

primes = 2 : [n | n Ã [3, 5 ..], isPrime n]

isPrime n = and [n `mod` t > 0 | t Ã candidates primes]

where candidates (p : ps) | p * p > n = []

| otherwise = p : candidates ps

• Or also:

primes = sieve [2 ..]

sieve (p : xs) = p : sieve [x | x Ã xs, x `mod` p > 0]

Summer Term 2017 Programming Paradigms

Programming Paradigms

The role of recursion (and kinds of recursion)

Summer Term 2017

Pattern matching + recursion vs. list comprehensions

Programming Paradigms 110

sumsquare :: Int ! Int

sumsquare i = if i == 0 then 0 else i * i + sumsquare (i – 1)

> sumsquare 4

30

But also possible:

We earlier saw:

sumsquare :: Int ! Int

sumsquare n = sum [i * i | i Ã [0 .. n]]

> sumsquare 4

30

So which form is “better”?

No obvious/general answer. What could be criteria?

Maybe:

• efficiency

• readability

• “provability”

Fact: also sum, [0 .. n], … are ultimately defined via recursive functions.

Summer Term 2017

Different kinds of recursion

Programming Paradigms 111

sum :: [Int] ! Int

sum [] = 0

sum (x : xs) = x + sum xs

Structural recursion:

General/arbitrary recursion:

sumsquare :: Int ! Int

sumsquare i = if i == 0 then 0 else i * i + sumsquare (i – 1)

Also “structural” in some sense, or at least inductive:

digsum :: Int ! Int

digsum n | n < 10 = n

| otherwise = let (d, m) = n `divMod` 10 in m + digsum d

Also: ack, …, Quicksort, …

Summer Term 2017

Another example for general recursion

Programming Paradigms 120

euclid :: Int ! Int ! Int

euclid a 0 = a

euclid a b | a > b = euclid (a – b) b

euclid a b = euclid a (b – a)

Consider Euclid’s algorithm:

• Loops (e.g., while) turn into recursive

functions.

• Here even special form: tail recursion.

• How does this play out for verification?

Summer Term 2017

Comparison structural and general recursion

Programming Paradigms 121

• General recursion is much more flexible!

• Algorithmic principles like “divide and conquer” can be employed.

• Some functions can provably not be implemented with structural recursion.

• Structural recursion:

• … gives a very useful “recipe” for defining functions

• … guarantees termination (on finite structures)

• … enables very direct proofs by induction

• … can be “packaged” as a reusable program scheme

Summer Term 2017 Programming Paradigms

Programming Paradigms

Types in Haskell

Summer Term 2017 Programming Paradigms 124

Types

• Important concept of Haskell, so far considered only in passing:

Every expression and every function have a type.

• Notation for type assignment: double colon

• Foundation: predefined base types for constants

e.g., 1 :: Int

• diverse numeric types, e.g., Integer, Rational, Float, Double

• characters: Char

• Boolean values: Bool

• Additionally: various type constructors (tuples, lists, …) for more complex types

Summer Term 2017 Programming Paradigms 125

Typing, type checking, type inference

• Every expression has exactly one type, which is determined before runtime:

Haskell is a strongly and statically typed language.

• Function definitions and applications are checked for type consistency:

type checking

• In addition, Haskell offers , i.e., the types need not necessarily be

written down explicitly.

• There is no (implicit or explicit) casting between types.

type inference

Summer Term 2017 Programming Paradigms 127

Particulars on typing of numbers

• We have already mentioned various number types: Int, Integer, Float

(and there are several further ones, for example Rational).

• Number literals can have a different concrete type depending on context

(e.g., 3 :: Int, 3 :: Integer, 3 :: Float, 3.0 :: Float, 3.5 :: Float, 3.5 :: Double).

• For general expressions there are overloaded conversion functions, for example:

 fromIntegral :: Int ! Integer, fromIntegral :: Integer ! Int,

fromIntegral :: Int ! Rational, fromIntegral :: Integer ! Float, …

 truncate :: Float ! Int, truncate :: Double ! Int, truncate :: Float ! Integer,

…, round :: …, ceiling :: …, floor :: …

• Conversions are not necessary in, for example, 3 + 4.5 or in: ,

but for example in:

or in:

f x = 2 * x + 3.5

g y = f 4 / y

f :: Int ! Float

f x = 2 * (fromIntegral x) + 3.5

f x = 2 * x + 3.5

g y = f (fromIntegral (length "abcd")) / y

Summer Term 2017 Programming Paradigms

Programming Paradigms

Algebraic data types

Summer Term 2017 Programming Paradigms 131

Declaration of (algebraic) data types

• An important aspect of typical Haskell programs is the definition of problem specific

data types (instead of building everything from lists or so).

• To that end, one primarily uses data type declarations:

data Color = Red | Green | Blue | White | Black

data constructorstype constructor

• Syntax: constructors in Haskell (both data and type constructors) generally start with

a capital letter (exception: certain symbolic forms like in the case of lists).

• Semantics: the newly defined type Color above is an enumeration type that consists

of exactly the five given values.

Summer Term 2017 Programming Paradigms 132

Declaration of (algebraic) data types

• User defined data types like

can arbitrarily be used as components in other types, such as for example in

[(Color, Int)] with values e.g. [], [(Red, –5)] and [(Red, –5), (Blue, 2), (Red, 0)].

• Computation goes via pattern matching:

data Color = Red | Green | Blue | White | Black

primaryCol :: Color ! Bool

primaryCol Red = True

primaryCol Green = True

primaryCol Blue = True

primaryCol _ = False

Summer Term 2017 Programming Paradigms 133

User defined structured types

• It is also possible to declare new types with structure, by using a data constructor

with parameters:

data Point = Pt (Integer, Integer)

type

constructor
data

constructor

type of encased values

• With such a user defined data constructor with parameters, one can then construct

structured values of one’s own type:

Pt (1, 2) :: Point

• It is permissible to use the same name for a type constructor and for a data constructor

(e.g., twice Pt here), even if the data constructor does not belong to the same type.

Summer Term 2017 Programming Paradigms 134

User defined structured types

• A somewhat more complex example:

• Possible values for Connection:

- Train (Date 20 04 2011) (Hour 11) (Hour 14)

- Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

- …

• Computation via pattern matching:

data Date = Date Int Int Int

data Time = Hour Int

data Connection = Train Date Time Time |

Flight String Date Time Time

travelTime :: Connection ! Int

travelTime (Flight _ _ (Hour d) (Hour a)) = a – d + 2

travelTime (Train _ (Hour d) (Hour a)) = a – d + 1

Summer Term 2017 Programming Paradigms 135

User defined structured types

• Internal representation for: Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

Summer Term 2017 Programming Paradigms 136

Data constructors as special functions

For:

we get:

data Date = Date Int Int Int

data Time = Hour Int

data Connection = Train Date Time Time |

Flight String Date Time Time

> :t Date

Date :: Int ! Int ! Int ! Date

> :t Hour

Hour :: Int ! Time

> :t Train

Train :: Date ! Time ! Time ! Connection

> :t Flight

Flight :: String ! Date ! Time ! Time ! Connection

Summer Term 2017 Programming Paradigms 137

Recursive data types

• Like function definitions, data type declarations can also be recursive.

• Maybe the simplest example:

• Values of that type Nat:

Zero, Succ Zero, Succ (Succ Zero), …

• Computation via pattern matching:

data Nat = Zero | Succ Nat

add :: Nat ! Nat ! Nat

add Zero m = m

add (Succ n) m = Succ (add n m)

Summer Term 2017 Programming Paradigms 138

Recursive data types

• The definition:

maybe reminds of:

• Indeed, lists are internally defined as, essentially:

data [Bool] = [] | (:) Bool [Bool]

add :: Nat ! Nat ! Nat

add Zero m = m

add (Succ n) m = Succ (add n m)

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

Summer Term 2017 Programming Paradigms 139

Recursive data types

• A somewhat more complex example:

• Possible values:

Lit 42 , Add (Lit 2) (Lit 7) , Mul (Lit 3) (Add (Lit 4) (Lit 0)) , …

• A “mini interpreter” :

data Expr = Lit Int | Add Expr Expr | Mul Expr Expr

eval :: Expr ! Int

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 * eval e2

Summer Term 2017 Programming Paradigms 140

Recursive data types

Or, general binary trees:

with data constructors typed as follows:

and (to be defined) functions for “flattening”, prefix traversal, postfix traversal, …

data Tree = Leaf Int | Node Tree Int Tree

> :t Leaf

Leaf :: Int ! Tree

> :t Node

Node :: Tree ! Int ! Tree ! Tree

Summer Term 2017 Programming Paradigms 141

Mutually recursive data types

• Finally, a somewhat artificial example:

• Possible values for T1:

E , A (B E) , A (B (A (B E))) , A (B (A (B (A (B E))))) , …

• Possible values for T2:

B E , B (A (B E)) , B (A (B (A (B E)))) , …

• Computation:

data T1 = A T2 | E

data T2 = B T1

as :: T1 ! Int

as (A t) = 1 + as' t

as E = 0

as' :: T2 ! Int

as' (B t) = as t

Summer Term 2017 Programming Paradigms 142

Type synonyms

• Type synonyms give new names for already existing types:

 in contrast to data, no constructors, no alternatives;

also, really just a new name, not a new type

 can be nested:

but not recursive!

type String = [Char]

type Pos = (Int, Int)

type Trans = Pos ! Pos

