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Infinite lists

• In Haskell there are even abbreviating notations for infinite lists.

[ 1, 3 .. ] means [ 1, 3, 5, 7, 9, . . . . . . . ]

• With this we can represent infinite series as lists, e.g.,

squares =    [  n^2 | n Ã naturals ]

facs =    [ fac n  | n Ã naturals ]

primes =    2 : [ n  | n Ã odds, factors n == [1, n] ]

• For example:

naturals, evens, odds :: [Integer]

naturals =    [ 1 .. ]

evens =    [ 2, 4 .. ]

odds =    [ 1, 3 .. ]
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Actually working with infinite lists

• Input of an expression that denotes an infinite list expectedly leads to

non-terminating output (needs to be stopped “by hand”!)

• However, working with finite parts of infinite lists is possible, e.g.,

> take 5 primes

[2, 3, 5, 7, 11]

> [ x | x Ã squares, x < 100 ]

[1, 4, 9, 16, 25, 36, 49, 64, 81,  

• That this is possible is not trivial. It is a benefit of Haskell’s on-demand evaluation

strategy, which computes the value of a (sub-)expression only if, and when, it is

absolutely required (“lazy evaluation”).

• The following expression “intuitively” denotes a finite list, but the computation

does nevertheless not terminate:

> primes !! 5

13

Why ?
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Some more examples: variants for prime number generation

• Instead of:

odds =  [ 1, 3 .. ]

factors n =  [ x  |  x Ã [1 .. n], n `mod` x == 0 ]

primes =  2 : [ n  | n Ã odds, factors n == [ 1, n ] ]

• For example:

primes      =  2 : [ n  | n Ã [ 3, 5 .. ], isPrime n ]

isPrime n  =  and [ n `mod` t > 0  |  t Ã candidates primes ] 

where  candidates (p : ps)  |  p * p > n   = [ ]

|  otherwise  = p : candidates ps

• Or also:

primes =  sieve [ 2 .. ]

sieve (p : xs)  =  p : sieve [ x  |  x Ã xs, x `mod` p > 0 ]
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The role of recursion (and kinds of recursion)
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Pattern matching + recursion vs. list comprehensions
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sumsquare :: Int ! Int

sumsquare i =  if i == 0 then 0 else i * i + sumsquare (i – 1)

> sumsquare 4

30

But also possible:

We earlier saw:

sumsquare :: Int ! Int

sumsquare n  =  sum [ i * i |  i Ã [0 .. n] ]

> sumsquare 4

30

So which form is “better”?

No obvious/general answer. What could be criteria?

Maybe:

• efficiency

• readability

• “provability”

Fact: also sum, [0 .. n], … are ultimately defined via recursive functions.
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Different kinds of recursion
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sum :: [Int] ! Int

sum [ ] =  0

sum (x : xs)  =  x + sum xs

Structural recursion:

General/arbitrary recursion:

sumsquare :: Int ! Int

sumsquare i =  if i == 0 then 0 else i * i + sumsquare (i – 1)

Also “structural” in some sense, or at least inductive:

digsum :: Int ! Int

digsum n  | n < 10 =  n

| otherwise =  let (d, m) = n `divMod` 10  in  m + digsum d

Also: ack, …, Quicksort, …
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Another example for general recursion
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euclid :: Int ! Int ! Int

euclid a 0             =  a

euclid a b | a > b  =  euclid (a – b) b

euclid a b             =  euclid a (b – a)

Consider Euclid’s algorithm:

• Loops (e.g., while) turn into recursive 

functions.

• Here even special form: tail recursion.

• How does this play out for verification?
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Comparison structural and general recursion
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• General recursion is much more flexible!

• Algorithmic principles like “divide and conquer” can be employed.

• Some functions can provably not be implemented with structural recursion.

• Structural recursion:

• … gives a very useful “recipe” for defining functions

• … guarantees termination (on finite structures)

• … enables very direct proofs by induction

• … can be “packaged” as a reusable program scheme
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Types in Haskell
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Types

• Important concept of Haskell, so far considered only in passing:

Every expression and every function have a type.

• Notation for type assignment: double colon

• Foundation: predefined base types for constants

e.g., 1 :: Int

• diverse numeric types, e.g.,  Integer, Rational, Float, Double

• characters:  Char

• Boolean values:  Bool

• Additionally: various type constructors (tuples, lists, …) for more complex types
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Typing, type checking, type inference

• Every expression has exactly one type, which is determined before runtime:

Haskell is a strongly and statically typed language.

• Function definitions and applications are checked for type consistency:

type checking

• In addition, Haskell offers                               , i.e., the types need not necessarily be

written down explicitly.

• There is no (implicit or explicit) casting between types.

type inference
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Particulars on typing of numbers

• We have already mentioned various number types: Int, Integer, Float

(and there are several further ones, for example Rational).

• Number literals can have a different concrete type depending on context

(e.g., 3 :: Int, 3 :: Integer, 3 :: Float, 3.0 :: Float, 3.5 :: Float, 3.5 :: Double).

• For general expressions there are overloaded conversion functions, for example:

 fromIntegral :: Int ! Integer,  fromIntegral :: Integer ! Int, 

fromIntegral :: Int ! Rational,  fromIntegral :: Integer ! Float,  …

 truncate :: Float ! Int,  truncate :: Double ! Int,  truncate :: Float ! Integer,

…,  round :: …,  ceiling :: …,  floor :: …

• Conversions are not necessary in, for example, 3 + 4.5 or in:                                       ,

but for example in:

or in: 

f x = 2 * x + 3.5

g y = f 4 / y

f :: Int ! Float

f x = 2 * (fromIntegral x) + 3.5

f x = 2 * x + 3.5

g y = f (fromIntegral (length "abcd")) / y
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Algebraic data types
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Declaration of (algebraic) data types

• An important aspect of typical Haskell programs is the definition of problem specific

data types (instead of building everything from lists or so).

• To that end, one primarily uses data type declarations:

data  Color  =   Red | Green  | Blue | White  | Black

data constructorstype constructor

• Syntax: constructors in Haskell (both data and type constructors) generally start with

a capital letter (exception: certain symbolic forms like in the case of lists).    

• Semantics: the newly defined type Color above is an enumeration type that consists

of exactly the five given values.
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Declaration of (algebraic) data types

• User defined data types like

can arbitrarily be used as components in other types, such as for example in 

[ (Color, Int) ] with values e.g. [ ], [ (Red, –5) ] and [ (Red, –5), (Blue, 2), (Red, 0) ]. 

• Computation goes via pattern matching:

data  Color  =   Red | Green  | Blue | White  | Black

primaryCol :: Color ! Bool

primaryCol Red =  True

primaryCol Green =  True

primaryCol Blue =  True

primaryCol _ =  False
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User defined structured types

• It is also possible to declare new types with structure, by using a data constructor 

with parameters:

data  Point  =   Pt ( Integer, Integer )

type

constructor
data

constructor

type of encased values

• With such a user defined data constructor with parameters, one can then construct

structured values of one’s own type:

Pt (1, 2) :: Point

• It is permissible to use the same name for a type constructor and for a data constructor

(e.g., twice Pt here), even if the data constructor does not belong to the same type.
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User defined structured types

• A somewhat more complex example:

• Possible values for Connection:

- Train (Date 20 04 2011) (Hour 11) (Hour 14)

- Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)

- …

• Computation via pattern matching:

data Date = Date Int Int Int

data Time = Hour Int

data Connection  = Train Date Time Time | 

Flight String Date Time Time

travelTime :: Connection ! Int

travelTime (Flight _ _ (Hour d) (Hour a)) = a – d + 2

travelTime (Train _ (Hour d) (Hour a))     = a – d + 1
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User defined structured types

• Internal representation for: Flight "LH" (Date 20 04 2011) (Hour 16) (Hour 20)
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Data constructors as special functions

For:

we get:

data Date   =  Date Int Int Int

data Time =  Hour Int

data Connection  = Train Date Time Time | 

Flight String Date Time Time

> :t Date

Date :: Int ! Int ! Int ! Date

> :t Hour

Hour :: Int ! Time

> :t Train

Train :: Date ! Time ! Time ! Connection

> :t Flight

Flight :: String ! Date ! Time ! Time ! Connection
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Recursive data types

• Like function definitions, data type declarations can also be recursive.

• Maybe the simplest example:

• Values of that type Nat: 

Zero, Succ Zero, Succ (Succ Zero), …

• Computation via pattern matching:

data Nat  =  Zero | Succ Nat

add :: Nat ! Nat ! Nat

add Zero m = m

add (Succ n)  m = Succ (add n m)
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Recursive data types

• The definition:

maybe reminds of:

• Indeed, lists are internally defined as, essentially:

data [Bool]  =  [ ]  |  (:) Bool [Bool]

add :: Nat ! Nat ! Nat

add Zero m = m

add (Succ n)  m = Succ (add n m)

concatenation  [ ]          ys =     ys

concatenation  (x : xs)  ys =     x : concatenation xs ys
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Recursive data types

• A somewhat more complex example:

• Possible values:

Lit 42 , Add (Lit 2) (Lit 7) , Mul (Lit 3) (Add (Lit 4) (Lit 0)) , …

• A “mini interpreter” :

data Expr =  Lit Int | Add Expr Expr | Mul Expr Expr

eval :: Expr ! Int

eval  (Lit n)         =  n

eval  (Add e1 e2)  =  eval e1 + eval e2

eval  (Mul e1 e2)  =  eval e1 * eval e2
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Recursive data types

Or, general binary trees:

with data constructors typed as follows:

and (to be defined) functions for “flattening”, prefix traversal, postfix traversal, …

data Tree  =  Leaf Int | Node Tree Int Tree

> :t Leaf

Leaf :: Int ! Tree

> :t Node

Node :: Tree ! Int ! Tree ! Tree



Summer Term 2017 Programming Paradigms 141

Mutually recursive data types

• Finally, a somewhat artificial example:

• Possible values for T1:

E , A (B E) , A (B (A (B E))) , A (B (A (B (A (B E))))) , …

• Possible values for T2:

B E , B (A (B E)) , B (A (B (A (B E)))) , …

• Computation:

data T1  =  A T2 | E

data T2  =  B T1

as :: T1 ! Int

as (A t) = 1 + as' t

as E     = 0

as' :: T2 ! Int

as' (B t) = as t
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Type synonyms

• Type synonyms give new names for already existing types:

 in contrast to data, no constructors, no alternatives;

also, really just a new name, not a new type

 can be nested:

but not recursive!

type String  =  [Char]

type Pos     =  (Int, Int)

type Trans  =  Pos ! Pos


