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Parametrically polymorphic functions

« Many of the already seen/existing functions on lists are meant for lists over arbitrary
element types, e.g.:

>length [ 1, 2]
2 I
length [ ] =0
length (X : xs) = length xs + 1
>length[[],['a,'b,'c"]]
2 I

 Like for standard functions, one naturally would like to have the same flexibility
for one’s own defined functions:

concatenation [ ] yS = Vs
concatenation (X :Xs) ys = X :concatenation Xs ys
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Parametrically polymorphic functions

Instead of several variants:

concatenation :: [Int] — [Int] — [Int]

concatenation [ ] yS = Vs
concatenation (X :Xs) ys = X :concatenation Xs ys

concatenation’ :: [Bool] — [Bool] — [Bool]

concatenation’ [ ] yS = VS
concatenation’ (X : Xs) ys = X :concatenation’ Xsys

concatenation’ :: String — String — String

concatenation’’ [ ] yS = VS
concatenation” (X : Xs) ys = X :concatenation’’ xsys

only one definition:

concatenation :: [a] — [a] — [a]

concatenation [ ] yS = Vs
concatenation (X : Xs) ys = X :concatenation Xs ys
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Type variables and parametrized types

« In order to be able to assign types to polymorphic functions, one uses variables

that act as place holders for arbitrary types:
| type variables I

L ]
L4

L4
o

« With type variables, we can build parametrized types.::for polymorphic functions:

L]
L4

length :: [z;] — Int
length [ ] =0

length (X : xs) = length xs + 1

 |If the result type is also described via a type variable, then of course the concrete type
of the actual parameter determines the type of the result:

>t last >t last [ True, False ]

last :: [a] — a last [ True, False ] :: Bool
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Safe use of polymorphic functions

concatenation :: [a] — [a] — [&]
concatenation [ ] YyS = YS
concatenation (X : Xs) ys = X : concatenation xs ys

> concatenation [ True ] [ False, True, False ]
[True, False, True, False]

> Concatenatlon llabcll "def"
"abcdef"

> concatenation "abc" [True]
Couldn't match 'Char' against 'Bool’
Expected type: Char
Inferred type: Bool
In the list element: True
In the second argument of ‘concatenation’, namely '[True]'
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Further examples

drop :: Int — [Int] — [Int]
drop 0 XS = XS

drop n [ ] =[]
drop (n+ 1) (X : xs) = dropnxs

zip :: [Int] — [Int] — [(Int, Int)]
zip (X:xS) (Y:ys) = (X,VY):zIp XSys
ZIp XS yS =[]

v

zip :: [a] — [b] — [(a, b)]
Zip (X:xs)(y:ys) = (X,y):zipXsys
Zip XS yS =[]

drop :: Int — [a] — [a]
drop 0 XS = XS
drop n [] =[]

drop (n+ 1) (X : xs) = dropnxs

fst::(a,b) —a
head :: [a] — a

take :: Int — [a] — [a]

id::a—a
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Safe use of polymorphic functions

zip :: [a] — [b] — [(a, b)]
zip (X:xs) (y:ys) = (X,y):zipXsys
Zip XS yS =[]

> zip "abc" [ True, False, True ]
[(‘a', True), ('b', False), (‘'c’, True)]

> :t "abc"
"abc" :: [Char]

> :t [ True, False, True ]
[True, False, True] :: [Bool]

> :t[(‘a, True), ('b', False), ('c', True) ]
[(‘a’, True), ('b', False), ('c', True)] :: [(Char, Bool)]
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Polymorphic data types

Abstraction possible from:

| data Tree = Leaf Int | Node Tree Int Tree I

to:

| data Tree a = Leaf a | Node (Tree a) a (Tree a) I

with data type constructors typed as follows:

> 't Leaf

Leaf ::a — Tree a

> 't Node

Node :: Treea — a — Treea — Tree a
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Polymorphic data types

 Possible values for:

| data Tree a = Leaf a | Node (Tree a) a (Tree a) I

are, for example: Leaf 3 :: Tree Int
Node (Leaf 'a’) 'b' (Leaf 'c’) :: Tree Char

but not: Node (Leaf 'a") 3 (Leaf 'c')

« Example function:

height :: Treea — Int
height (Leaf ) =0
height (Nodet; t,) = 1

+ max (height t,) (heightt,)
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Polymorphic type synonyms

Same kind of abstraction possible for type:

| type PairLista b = [(a, b)] I
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Programming Paradigms

‘Ad—hoc polymorphism I
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Standard type classes, in particular automatic “deriving”

» The generous introduction of ever new types might seem unattractive at first,
given that one then also has to (re-)implement certain functionality over and over

again (e.g., for input and output, for computing on enumeration types, ...).

« But these concerns are dispelled by mechanisms providing generic functionality,
for example:

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

allColors = [minBound .. maxBound] :: [Color]

| data Expr = Lit Int|Add Expr Expr | Mul Expr Expr deriving (Read, Show, Eq) I
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Standard type classes

Best explained through examples:

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

instance Show Color where

show Red = "rot"
show Green = "gruen"

data Rat = Rat (Int, Int)

instance Show Rat where
show (Rat (n, m)) = show n ++" /" ++ show m

data Expr = Lit Int| Add Expr Expr | Mul Expr Expr Of course, arbitrary
other functions can also
instance Show Expr where be called, not only the
show (Lit n) = "Lit" ++ shown ++ ™" one currently being
show (Add e, e,) = showe, ++ showe, ++ "Add;" defined (on the same or

show (Mul e, e,) = showe, ++ showe, ++ "Mul; " on another type).
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Interplay with parametric polymorphism

* We used type variables to express that a certain functionality does not
depend, say, on the type of elements of a list:

length :: [a] — Int
length [ ] =0
length (X : xs) = length xs +1

« How does that now play out for show?

 Certainly we do not want to write something like:

instance Show [Int] where
show [ ] ="["
show (i:is) = ... show i ... showis ...

instance Show [Color] where
show [ ] ="["
show (c:cs) = ...showc ... showcCs...
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Interplay with parametric polymorphism

« Parametrization over the element type, but with constraint on the type variable:

instance Show a = Show [a] where
show [ ] ="1"
show (X : xs) = ... show x ... show XS ...

« Such a constraint can also express a dependency on another type class:

instance Show a = Eq a where
X==y = show x ==showy

« And in a very natural way, constraints can also appear in the type signatures of
“normal” functions:

elem :: Eqa = a — [a] — Bool
elem x [] = False
elemx(y:ys) = x==y || elem x ys

Summer Term 2017 Programming Paradigms 172



User defined type classes?

 First, a look at the definitions of two classes in the standard library:

class Eq a where
(==) ::a— a — Bool
X==y = not(X/=y)
(/=) .-a— a— Bool
X/=y = not(x==y)

optional default
iImplementations

class Eq a = Ord a where
(<), (<=), (®), (>=) :: a — a — Bool

« Here Eq a=- Ord a does not mean that every Eqg-type is also an Ord-type, but
instead that a type only can belong to type class Ord if it already belongs to type
class Eg. (And, naturally, if it moreover supports operations (<), (<=), ..., for
whose default implementations one can of course make use of the assumed

existing Eqg-functionality.)

» Definition of one’s own type classes is simply analogous (see live examples).
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Programming Paradigms

‘ Higher-Order Functions I
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Higher-Order: functions as parameters and results (of other functions)

* In Haskell functions may “manipulate” or “generate” other functions:
« Functions may be function arguments.
» Functions may be function results.

« Name for this kind of functions (corresponding to concepts from predicate logic):

| functions of higher order I

* Functions that only process or generate “normal data” are called functions of first
order.
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Currying (1)

« In Haskell, functions with multiple parameters are usually viewed as being
implicitly “staged” functions of only one parameter each (saving parentheses):

between :: Integer — (Integer — (Integer — Bool))
between X y z | x<=y &&y<=z = True
| otherwise = False

 Application of this principle is now called currying (after Haskell B. Curry, who
studied this technique extensively, though the original “inventor” is actually
the logician Schonfinkel).

» The above form of the between-function is called the “curried” form, while the
more conventional (mathematics style) form with a parameter tuple is called
“uncurried”.
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Currying (2)

 Beside saving parentheses, the curried notation has the advantage that of each function,
one automatically has available several variants (with different arities).

between :: Integer — (Integer — (Integer — Bool))
between X y z | x<=y &&Yy<=z = True
| otherwise = False

between 2 .. Integer — (Integer — Bool)
between 2 3 . Integer — Bool
between 2 3 4 :: Bool

« Each such partial application has all “rights” of a function, in particular may
itself be further applied, passed on, stored in a data structure, ...
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Partial applications of operators: “sections”

» An operator that normally is written between its arguments can be turned into a
(curried) function to be written in front of its arguments, simply by enclosing it in
parentheses:

> (+) 34

E

« Called a “section”, it is also possible to include one of the arguments directly:

> ()32 > (3/) 2 > (/2) 3
i

» Some further examples: (>3), (1+), (1/), (*2), (++ [42])
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Anonymous functions (1)

« Functions can be created anonymously, that is, without giving them a name.
For example:

\x > x + x

RN

parameter x function body

 This corresponds to the mathematical notation of “A-abstractions”, e.g.:

Ax. (x + x)

« Their application is treated like normal function evaluation, e.g.:

>\ —=>Xx+Xx)3
‘6 I
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Anonymous functions (2)

A useful perspective in connection with currying:

i-ctead of add :: Int — Int — Int Iso: add :: Int — (Int — Int)
instead ot addxy=x+y a0 add =X —>\y - x+y
* Oralso:
const :: Int — Int — Int Us const :: Int — (Int — Int)

constx=\_ — X

constx =X

 Also, abbreviating notation for anonymous functions of several arguments:

Main> (\x -> \y -> 2*x*y) 2 3 Main> (\x y -> 2*x*y) 2 3
12 Vs. 12
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