Programming Paradigms

Summer Term 2017

7t Lecture

Prof. Janis Voigtlander
University of Duisburg-Essen

Summer Term 2017 Programming Paradigms

Programming Paradigms

‘ Parametric polymorphism I

Summer Term 2017 Programming Paradigms

Parametrically polymorphic functions

« Many of the already seen/existing functions on lists are meant for lists over arbitrary
element types, e.g.:

>length [1, 2]
2 I
length [] =0
length (X : xs) = length xs + 1
>length[[],['a,'b,'c"]]
2 I

 Like for standard functions, one naturally would like to have the same flexibility
for one’s own defined functions:

concatenation [] yS = Vs
concatenation (X :Xs) ys = X :concatenation Xs ys

Summer Term 2017 Programming Paradigms 150

Parametrically polymorphic functions

Instead of several variants:

concatenation :: [Int] — [Int] — [Int]

concatenation [] yS = Vs
concatenation (X :Xs) ys = X :concatenation Xs ys

concatenation’ :: [Bool] — [Bool] — [Bool]

concatenation’ [] yS = VS
concatenation’ (X : Xs) ys = X :concatenation’ Xsys

concatenation’ :: String — String — String

concatenation’’ [] yS = VS
concatenation” (X : Xs) ys = X :concatenation’’ xsys

only one definition:

concatenation :: [a] — [a] — [a]

concatenation [] yS = Vs
concatenation (X : Xs) ys = X :concatenation Xs ys

151

Summer Term 2017 Programming Paradigms

Type variables and parametrized types

« In order to be able to assign types to polymorphic functions, one uses variables

that act as place holders for arbitrary types:
| type variables I

L]
L4

L4
o

« With type variables, we can build parametrized types.::for polymorphic functions:

L]
L4

length :: [z;] — Int
length [] =0

length (X : xs) = length xs + 1

 |If the result type is also described via a type variable, then of course the concrete type
of the actual parameter determines the type of the result:

>t last >t last [True, False]

last :: [a] — a last [True, False] :: Bool

Summer Term 2017 Programming Paradigms 152

Safe use of polymorphic functions

concatenation :: [a] — [a] — [&]
concatenation [] YyS = YS
concatenation (X : Xs) ys = X : concatenation xs ys

> concatenation [True] [False, True, False]
[True, False, True, False]

> Concatenatlon llabcll "def"
"abcdef"

> concatenation "abc" [True]
Couldn't match 'Char' against 'Bool’
Expected type: Char
Inferred type: Bool
In the list element: True
In the second argument of ‘concatenation’, namely '[True]'

Summer Term 2017 Programming Paradigms 153

Further examples

drop :: Int — [Int] — [Int]
drop 0 XS = XS

drop n [] =[]
drop (n+ 1) (X : xs) = dropnxs

zip :: [Int] — [Int] — [(Int, Int)]
zip (X:xS) (Y:ys) = (X,VY):zIp XSys
ZIp XS yS =[]

v

zip :: [a] — [b] — [(a, b)]
Zip (X:xs)(y:ys) = (X,y):zipXsys
Zip XS yS =[]

drop :: Int — [a] — [a]
drop 0 XS = XS
drop n [] =[]

drop (n+ 1) (X : xs) = dropnxs

fst::(a,b) —a
head :: [a] — a

take :: Int — [a] — [a]

id::a—a

Summer Term 2017 Programming Paradigms 154

Safe use of polymorphic functions

zip :: [a] — [b] — [(a, b)]
zip (X:xs) (y:ys) = (X,y):zipXsys
Zip XS yS =[]

> zip "abc" [True, False, True]
[(‘a', True), ('b', False), (‘'c’, True)]

> :t "abc"
"abc" :: [Char]

> :t [True, False, True]
[True, False, True] :: [Bool]

> :t[(‘a, True), ('b', False), ('c', True)]
[(‘a’, True), ('b', False), ('c', True)] :: [(Char, Bool)]

Summer Term 2017 Programming Paradigms

155

Polymorphic data types

Abstraction possible from:

| data Tree = Leaf Int | Node Tree Int Tree I

to:

| data Tree a = Leaf a | Node (Tree a) a (Tree a) I

with data type constructors typed as follows:

> 't Leaf

Leaf ::a — Tree a

> 't Node

Node :: Treea — a — Treea — Tree a

Summer Term 2017 Programming Paradigms

156

Polymorphic data types

 Possible values for:

| data Tree a = Leaf a | Node (Tree a) a (Tree a) I

are, for example: Leaf 3 :: Tree Int
Node (Leaf 'a’) 'b' (Leaf 'c’) :: Tree Char

but not: Node (Leaf 'a") 3 (Leaf 'c')

« Example function:

height :: Treea — Int
height (Leaf) =0
height (Nodet; t,) = 1

+ max (height t,) (heightt,)

Summer Term 2017

Programming Paradigms 157

Polymorphic type synonyms

Same kind of abstraction possible for type:

| type PairLista b = [(a, b)] I

Summer Term 2017 Programming Paradigms 158

Programming Paradigms

‘Ad—hoc polymorphism I

Summer Term 2017 Programming Paradigms

Standard type classes, in particular automatic “deriving”

» The generous introduction of ever new types might seem unattractive at first,
given that one then also has to (re-)implement certain functionality over and over

again (e.g., for input and output, for computing on enumeration types, ...).

« But these concerns are dispelled by mechanisms providing generic functionality,
for example:

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

allColors = [minBound .. maxBound] :: [Color]

| data Expr = Lit Int|Add Expr Expr | Mul Expr Expr deriving (Read, Show, Eq) I

Summer Term 2017 Programming Paradigms 165

Standard type classes

Best explained through examples:

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

instance Show Color where

show Red = "rot"
show Green = "gruen"

data Rat = Rat (Int, Int)

instance Show Rat where
show (Rat (n, m)) = show n ++" /" ++ show m

data Expr = Lit Int| Add Expr Expr | Mul Expr Expr Of course, arbitrary
other functions can also
instance Show Expr where be called, not only the
show (Lit n) = "Lit" ++ shown ++ ™" one currently being
show (Add e, e,) = showe, ++ showe, ++ "Add;" defined (on the same or

show (Mul e, e,) = showe, ++ showe, ++ "Mul; " on another type).

Summer Term 2017 Programming Paradigms 167

Interplay with parametric polymorphism

* We used type variables to express that a certain functionality does not
depend, say, on the type of elements of a list:

length :: [a] — Int
length [] =0
length (X : xs) = length xs +1

« How does that now play out for show?

 Certainly we do not want to write something like:

instance Show [Int] where
show [] ="["
show (i:is) = ... show i ... showis ...

instance Show [Color] where
show [] ="["
show (c:cs) = ...showc ... showcCs...

Summer Term 2017 Programming Paradigms 171

Interplay with parametric polymorphism

« Parametrization over the element type, but with constraint on the type variable:

instance Show a = Show [a] where
show [] ="1"
show (X : xs) = ... show x ... show XS ...

« Such a constraint can also express a dependency on another type class:

instance Show a = Eq a where
X==y = show x ==showy

« And in a very natural way, constraints can also appear in the type signatures of
“normal” functions:

elem :: Eqa = a — [a] — Bool
elem x [] = False
elemx(y:ys) = x==y || elem x ys

Summer Term 2017 Programming Paradigms 172

User defined type classes?

 First, a look at the definitions of two classes in the standard library:

class Eq a where
(==) ::a— a — Bool
X==y = not(X/=y)
(/=) .-a— a— Bool
X/=y = not(x==y)

optional default
iImplementations

class Eq a = Ord a where
(<), (<=), (®), (>=) :: a — a — Bool

« Here Eq a=- Ord a does not mean that every Eqg-type is also an Ord-type, but
instead that a type only can belong to type class Ord if it already belongs to type
class Eg. (And, naturally, if it moreover supports operations (<), (<=), ..., for
whose default implementations one can of course make use of the assumed

existing Eqg-functionality.)

» Definition of one’s own type classes is simply analogous (see live examples).

Summer Term 2017 Programming Paradigms 174

Programming Paradigms

‘ Higher-Order Functions I

Summer Term 2017 Programming Paradigms

Higher-Order: functions as parameters and results (of other functions)

* In Haskell functions may “manipulate” or “generate” other functions:
« Functions may be function arguments.
» Functions may be function results.

« Name for this kind of functions (corresponding to concepts from predicate logic):

| functions of higher order I

* Functions that only process or generate “normal data” are called functions of first
order.

Summer Term 2017 Programming Paradigms 178

Currying (1)

« In Haskell, functions with multiple parameters are usually viewed as being
implicitly “staged” functions of only one parameter each (saving parentheses):

between :: Integer — (Integer — (Integer — Bool))
between X y z | x<=y &&y<=z = True
| otherwise = False

 Application of this principle is now called currying (after Haskell B. Curry, who
studied this technique extensively, though the original “inventor” is actually
the logician Schonfinkel).

» The above form of the between-function is called the “curried” form, while the
more conventional (mathematics style) form with a parameter tuple is called
“uncurried”.

Summer Term 2017 Programming Paradigms 179

Currying (2)

 Beside saving parentheses, the curried notation has the advantage that of each function,
one automatically has available several variants (with different arities).

between :: Integer — (Integer — (Integer — Bool))
between X y z | x<=y &&Yy<=z = True
| otherwise = False

between 2 .. Integer — (Integer — Bool)
between 2 3 . Integer — Bool
between 2 3 4 :: Bool

« Each such partial application has all “rights” of a function, in particular may
itself be further applied, passed on, stored in a data structure, ...

Summer Term 2017 Programming Paradigms 181

Partial applications of operators: “sections”

» An operator that normally is written between its arguments can be turned into a
(curried) function to be written in front of its arguments, simply by enclosing it in
parentheses:

> (+) 34

E

« Called a “section”, it is also possible to include one of the arguments directly:

> ()32 > (3/) 2 > (/2) 3
i

» Some further examples: (>3), (1+), (1/), (*2), (++ [42])

Summer Term 2017 Programming Paradigms 183

Anonymous functions (1)

« Functions can be created anonymously, that is, without giving them a name.
For example:

\x > x + x

RN

parameter x function body

 This corresponds to the mathematical notation of “A-abstractions”, e.g.:

Ax. (x + x)

« Their application is treated like normal function evaluation, e.g.:

>\ —=>Xx+Xx)3
‘6 I

Summer Term 2017 Programming Paradigms 184

Anonymous functions (2)

A useful perspective in connection with currying:

i-ctead of add :: Int — Int — Int Iso: add :: Int — (Int — Int)
instead ot addxy=x+y a0 add =X —>\y - x+y
* Oralso:
const :: Int — Int — Int Us const :: Int — (Int — Int)

constx=_ — X

constx =X

 Also, abbreviating notation for anonymous functions of several arguments:

Main> (\x -> \y -> 2*x*y) 2 3 Main> (\x y -> 2*x*y) 2 3
12 Vs. 12

Summer Term 2017 Programming Paradigms 185

