
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

7th Lecture

Summer Term 2017 Programming Paradigms

Programming Paradigms

Parametric polymorphism

Summer Term 2017 Programming Paradigms 150

Parametrically polymorphic functions

• Many of the already seen/existing functions on lists are meant for lists over arbitrary

element types, e.g.:

length [] = 0

length (x : xs) = length xs + 1

> length [1, 2]

2

> length [[], ['a', 'b', 'c']]

2

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

• Like for standard functions, one naturally would like to have the same flexibility

for one’s own defined functions:

Summer Term 2017 Programming Paradigms 151

Parametrically polymorphic functions

concatenation :: [Int] ! [Int] ! [Int]

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

Instead of several variants:

concatenation :: [Bool] ! [Bool] ! [Bool]

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

concatenation :: String ! String ! String

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

concatenation :: [a] ! [a] ! [a]

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

only one definition:

Summer Term 2017 Programming Paradigms 152

Type variables and parametrized types

• In order to be able to assign types to polymorphic functions, one uses variables

that act as place holders for arbitrary types:

type variables

• With type variables, we can build parametrized types for polymorphic functions:

length :: [a] ! Int

length [] = 0

length (x : xs) = length xs + 1

• If the result type is also described via a type variable, then of course the concrete type

of the actual parameter determines the type of the result:

> :t last

last :: [a] ! a

> :t last [True, False]

last [True, False] :: Bool

Summer Term 2017 Programming Paradigms 153

Safe use of polymorphic functions

concatenation :: [a] ! [a] ! [a]

concatenation [] ys = ys

concatenation (x : xs) ys = x : concatenation xs ys

> concatenation [True] [False, True, False]

[True, False, True, False]

> concatenation "abc" "def"

"abcdef"

> concatenation "abc" [True]

Couldn't match 'Char' against 'Bool'

Expected type: Char

Inferred type: Bool

In the list element: True

In the second argument of 'concatenation', namely '[True]'

Summer Term 2017 Programming Paradigms 154

Further examples

drop :: Int ! [Int] ! [Int]

drop 0 xs = xs

drop n [] = []

drop (n + 1) (x : xs) = drop n xs

drop :: Int ! [a] ! [a]

drop 0 xs = xs

drop n [] = []

drop (n + 1) (x : xs) = drop n xs

zip :: [Int] ! [Int] ! [(Int, Int)]

zip (x : xs) (y : ys) = (x, y) : zip xs ys

zip xs ys = []

zip :: [a] ! [b] ! [(a, b)]

zip (x : xs) (y : ys) = (x, y) : zip xs ys

zip xs ys = []

fst :: (a, b) ! a

head :: [a] ! a

take :: Int ! [a] ! [a]

id :: a ! a

Summer Term 2017 Programming Paradigms 155

Safe use of polymorphic functions

zip :: [a] ! [b] ! [(a, b)]

zip (x : xs) (y : ys) = (x, y) : zip xs ys

zip xs ys = []

> zip "abc" [True, False, True]

[('a', True), ('b', False), ('c', True)]

> :t "abc"

"abc" :: [Char]

> :t [True, False, True]

[True, False, True] :: [Bool]

> :t [('a', True), ('b', False), ('c', True)]

[('a', True), ('b', False), ('c', True)] :: [(Char, Bool)]

Summer Term 2017 Programming Paradigms 156

Polymorphic data types

Abstraction possible from:

to:

with data type constructors typed as follows:

data Tree = Leaf Int | Node Tree Int Tree

> :t Leaf

Leaf :: a ! Tree a

> :t Node

Node :: Tree a ! a ! Tree a ! Tree a

data Tree a = Leaf a | Node (Tree a) a (Tree a)

Summer Term 2017 Programming Paradigms 157

Polymorphic data types

• Possible values for:

are, for example: Leaf 3 :: Tree Int

Node (Leaf 'a') 'b' (Leaf 'c') :: Tree Char

but not: Node (Leaf 'a') 3 (Leaf 'c')

• Example function:

height :: Tree a ! Int

height (Leaf _) = 0

height (Node t1 _ t2) = 1 + max (height t1) (height t2)

data Tree a = Leaf a | Node (Tree a) a (Tree a)

Summer Term 2017 Programming Paradigms 158

Polymorphic type synonyms

Same kind of abstraction possible for type:

type PairList a b = [(a, b)]

Summer Term 2017 Programming Paradigms

Programming Paradigms

Ad-hoc polymorphism

Summer Term 2017

Standard type classes, in particular automatic “deriving”

Programming Paradigms 165

• The generous introduction of ever new types might seem unattractive at first,

given that one then also has to (re-)implement certain functionality over and over

again (e.g., for input and output, for computing on enumeration types, …).

• But these concerns are dispelled by mechanisms providing generic functionality,

for example:

…

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

allColors = [minBound .. maxBound] :: [Color]

data Expr = Lit Int | Add Expr Expr | Mul Expr Expr deriving (Read, Show, Eq)

Summer Term 2017

Standard type classes

Programming Paradigms 167

Best explained through examples:

data Color = Red | Green | Blue | White | Black deriving (Enum, Bounded)

instance Show Color where

show Red = "rot"

show Green = "gruen"

…

data Expr = Lit Int | Add Expr Expr | Mul Expr Expr

instance Show Expr where

show (Lit n) = "Lit " ++ show n ++ "; "

show (Add e1 e2) = show e1 ++ show e2 ++ "Add; "

show (Mul e1 e2) = show e1 ++ show e2 ++ "Mul; "

data Rat = Rat (Int, Int)

instance Show Rat where

show (Rat (n, m)) = show n ++ " / " ++ show m

Of course, arbitrary

other functions can also

be called, not only the

one currently being

defined (on the same or

on another type).

Summer Term 2017

• We used type variables to express that a certain functionality does not

depend, say, on the type of elements of a list:

• How does that now play out for show?

• Certainly we do not want to write something like:

Interplay with parametric polymorphism

Programming Paradigms 171

instance Show [Int] where

show [] = "[]"

show (i : is) = … show i … show is …

instance Show [Color] where

show [] = "[]"

show (c : cs) = … show c … show cs …

length :: [a] ! Int

length [] = 0

length (x : xs) = length xs + 1

Summer Term 2017

• Parametrization over the element type, but with constraint on the type variable:

• Such a constraint can also express a dependency on another type class:

• And in a very natural way, constraints can also appear in the type signatures of

“normal” functions:

Interplay with parametric polymorphism

Programming Paradigms 172

instance Show a) Show [a] where

show [] = "[]"

show (x : xs) = … show x … show xs …

instance Show a) Eq a where

x == y = show x == show y

elem :: Eq a) a ! [a] ! Bool

elem x [] = False

elem x (y : ys) = x == y | | elem x ys

Summer Term 2017

• First, a look at the definitions of two classes in the standard library:

• Here Eq a) Ord a does not mean that every Eq-type is also an Ord-type, but

instead that a type only can belong to type class Ord if it already belongs to type

class Eq. (And, naturally, if it moreover supports operations (<), (<=), …, for

whose default implementations one can of course make use of the assumed

existing Eq-functionality.)

• Definition of one’s own type classes is simply analogous (see live examples).

User defined type classes?

Programming Paradigms 174

class Eq a where

(==) :: a ! a ! Bool

x == y = not (x /= y)

(/=) :: a ! a ! Bool

x /= y = not (x == y)

class Eq a) Ord a where

(<), (<=), (>), (>=) :: a ! a ! Bool

…

optional default

implementations

Summer Term 2017 Programming Paradigms

Programming Paradigms

Higher-Order Functions

Summer Term 2017 Programming Paradigms 178

Higher-Order: functions as parameters and results (of other functions)

• In Haskell functions may “manipulate” or “generate” other functions:

• Functions may be function arguments.

• Functions may be function results.

• Name for this kind of functions (corresponding to concepts from predicate logic):

functions of higher order

• Functions that only process or generate “normal data” are called functions of first

order.

Summer Term 2017 Programming Paradigms 179

Currying (1)

• In Haskell, functions with multiple parameters are usually viewed as being

implicitly “staged” functions of only one parameter each (saving parentheses):

• Application of this principle is now called currying (after Haskell B. Curry, who

studied this technique extensively, though the original “inventor” is actually

the logician Schönfinkel).

• The above form of the between-function is called the “curried” form, while the

more conventional (mathematics style) form with a parameter tuple is called

“uncurried”.

between :: Integer ! (Integer ! (Integer ! Bool))

between x y z | x <= y && y <= z = True

| otherwise = False

Summer Term 2017 Programming Paradigms 181

Currying (2)

• Beside saving parentheses, the curried notation has the advantage that of each function,

one automatically has available several variants (with different arities).

between 2 :: Integer ! (Integer ! Bool)

between 2 3 :: Integer ! Bool

between 2 3 4 :: Bool

• Each such partial application has all “rights” of a function, in particular may

itself be further applied, passed on, stored in a data structure, …

between :: Integer ! (Integer ! (Integer ! Bool))

between x y z | x <= y && y <= z = True

| otherwise = False

Summer Term 2017 Programming Paradigms 183

Partial applications of operators: “sections”

• An operator that normally is written between its arguments can be turned into a

(curried) function to be written in front of its arguments, simply by enclosing it in

parentheses:
> (+) 3 4

7

• Called a “section”, it is also possible to include one of the arguments directly:

> (/) 3 2

1.5

> (3/) 2

1.5
vs.

> (/2) 3

1.5
vs.

• Some further examples: (>3), (1+), (1/), (*2), (++ [42])

Summer Term 2017 Programming Paradigms 184

Anonymous functions (1)

• Functions can be created anonymously, that is, without giving them a name.

For example:

• This corresponds to the mathematical notation of “-abstractions”, e.g.:

• Their application is treated like normal function evaluation, e.g.:

x.(x + x)

function bodyparameter x

\x -> x + x

> (\x ! x + x) 3

6

Summer Term 2017

Anonymous functions (2)

• Also, abbreviating notation for anonymous functions of several arguments:

Main> (\x y -> 2*x*y) 2 3

12

Main> (\x -> \y -> 2*x*y) 2 3

12

• A useful perspective in connection with currying:

add :: Int ! Int ! Int

add x y = x + y
instead of:

add :: Int ! (Int ! Int)

add = \x ! \y ! x + y
also:

• Or also:

const :: Int ! Int ! Int

const x _ = x

const :: Int ! (Int ! Int)

const x = _ ! x
vs.

vs.

Programming Paradigms 185

