Programming Paradigms

Summer Term 2017

8th Lecture

Prof. Janis Voigtlander
University of Duisburg-Essen

Summer Term 2017 Programming Paradigms

Higher-Order: somewhat artificial examples

« Function as parameter and result:

g::(a—a—a—a
gfx=r1f(fXx)

« Somewhat more explicit (with A-abstraction):

g::(a—a—(a—a
gf=W%—=f(fXx

 Currying inside the language:

curry :: ((a,b) - ¢c) — (a— b —)
curry f = \xy — f (X,y)

uncurry :: (a— b —c¢) — ((a, b) — ¢)
uncurry f = \(x,y) — f xy

» And conversely:

Summer Term 2017 Programming Paradigms 189

Commonly used higher-order functions on lists (1)

« Avery useful example function that takes another function as parameter,
and then applies it to all elements of a list, is the map-function:

[]

fXx:map f xs

map f []
map f (X : Xs)

function as parameter

« Two different applications of this function:

> map square [1, 2, 3] > map sqrt [2, 3, 4]
[1, 4, 9] :: [Integer] [1.41421, 1.73205, 2.0] :: [Double]

« The function map is polymorphic:

> 't map
map :: (a— b) — [a] — [b]

Summer Term 2017 Programming Paradigms 190

Commonly used higher-order functions on lists (2)

« Beside map, there are several further important higher-order functions
for working with lists: filter, foldl, foldr, zipWith, scanl, scanr, ...

« The function filter lets us select list elements that satisfy a certain
Boolean condition:

filter :: (a — Bool) — [a] — [a]
filterpxs = [X|X <+ xs,pX]

“predicate”

> filter even [1, 2, 4,5, 7, 8]
[2, 4, 8]

abbreviation for \x — x >3
(reminder: “section”)

> filter even (filter (>3
[4, 8]

[1,2,4,5,7,8])

Summer Term 2017 Programming Paradigms 192

Effective use of higher-order functions

» Rather un-idiomatic Haskell:

fun :: [Int] — Int
fun[]=0

fun (X : xs) | x<20

| otherwise

5*x—3+ fun xs
fun xs

* Better: fun :: [Int] — Int
fun = sum . map (\x —5*x-23) . filter (<20)

 Further functions useful for this style: zip, splitAt, takeWhile, repeat, iterate,

Summer Term 2017 Programming Paradigms 194

Further examples for using higher-order functions

» What does the following function achieve (in the context of Gloss)?

f .. Float — [Float — Picture] — (Float — Picture)
fdfst=pictures [translate (i*d) 0 (at) | (i,a) « zip[0..] fs]

e And this one?

g :: [Float] — [Float — Picture] — (Float — Picture)
g ss fs t = pictures (map (\(s, a) — a (s * t)) (zip ss fs))

» Something of similar spirit is part of the exercises as a bonus task.

Summer Term 2017 Programming Paradigms

195

Further examples for using higher-order functions

* Recall:

data Expr = Lit Int| Add Expr Expr | Mul Expr Expr

eval :: Expr — Int

eval (Litn) =n
eval (Adde,e,) = evale, +evale,
eval (Mule;e,) eval e, * eval e,

 Let’s assume we want to add subtraction and division.

eval (Sube,e,) = evale,—evale,
eval (Dive,e,) = evale, div evale,

* Possible problem: division by zero, hence ...

Summer Term 2017 Programming Paradigms 196

Further examples for using higher-order functions

» To take care of possible division by zero, we could proceed as follows:

eval :: Expr — Maybe Int
eval (Litn) = Justn
eval (Adde,e,) = caseevale, of
Nothing — Nothing
Justr, — case eval e, of
Nothing — Nothing
Justr, — Just(r;+r,)

e But to avoid these tedious case-cascades, abstraction of the essence into:

andThen :: Maybe a — (a — Maybe b) — Maybe b
andThen m f = case m of Nothing — Nothing
Justr —fr

» Andthen,e.g. [oval (Adde, e, = evale, ‘andThen \r, —

eval e, ‘andThen \r, — Just (r; +r1,)

Summer Term 2017 Programming Paradigms 197

Higher-Order: a somewhat more complex example, memoization (1)

» Let’s consider the following program, which is very inefficient:

fib :: Int — Int
fion | n<2 =1
fib n

= fib (n — 2) + fib (n — 1)

» The inefficiency is due to the structure of the “call graph” (here for fib 6):

-
REC]BH
r" -
Eec|4d ----m Base| 2
v
Base| 2
- -
Eec|5 "--E-REC'BH
.
Pt Base| 1l
Eec| o
T
Fec|4d ----m BEec|3 ----m» Base| 2
Coa RN
Base| 2 Base| 1l

Base| 2

Base| 1l

Summer Term 2017 Programming Paradigms

199

Higher-Order: a somewhat more complex example, memoization (2)

* Let’s consider the following program, which is very inefficient:

fib :: Int — Int
fibn | n<2
fib n

1
fib (n— 2) + fib (n— 1)

* We can make function results “reusable”, in a very canonical way, independently of
the concrete fib-function:

memo :: (Int — Int) — (Int — Int)
memo f =g

where g n
table

table ' n
[fnin < [0.]]

> let mfib = memo fib

> mfib 30

1346269 -- after a few seconds
> mfib 30

1346269 -- “immediately”

Summer Term 2017

Programming Paradigms 200

Higher-Order: a somewhat more complex example, memoization (3)

« |t is even better to exploit memoization also inside the recursion:

mfib = memo fib

fib :: Int — Int
fion | n<2 =1
fib n = mfib (n—2) + mfib (n — 1)

e Since then:

> fib 30

1346269 -- “immediately”
> fib 31

2178309 -- “even faster”

» “Call graph” now:

e REC[E - +» Base|Z
Rec|6 --"7 7 v i K
g
Fec|S ----mmmmmiaaa - = Rec|3 = Base|1l

Summer Term 2017 Programming Paradigms 201

Structural recursion on lists as a higher-order function

0 prod []

sum []
X + sum Xs prod (X : Xs)

sum (X : XS)

1
X * prod Xxs

 The list functions for summing or multiplying list elements use the same
recursion pattern, which can be realized with the help of a standard function

for “folding” binary operators over lists:

foldr m(@a—b—=b)—b—[a]—Db

foldr f k [] =k
foldr f k (x:xs) = f x (foldr f k xs)

(..r for “right”;
there is also a foldl)

» For example, definitions of sum and prod as applications of foldr:

sum, prod :: [Int] — Int
sum = foldr (+) O
prod = foldr (*) 1

Summer Term 2017 Programming Paradigms

202

Visualization of foldr

foIdr fk

[]

Summer Term 2017

Programming Paradigms

203

Further examples for using foldr

» By using foldr, there are predefined logical junctors that operate on implementiert,
lists of Boolean values:

and, or :: [Bool] — Bool
and = foldr (&&) True
or = foldr (|) False

« “Quantors” over lists are realized as generalizations of these junctors via
composition:

any, all :: (a — Bool) — [a] — Bool
anyp = or.mapp
allp = and. map p

|e.g.: all (<100) [x"2|x<+[1..19]] I

Summer Term 2017 Programming Paradigms 204

General strategy for using foldr

« When can a function be expressed using foldr?

« Whenever it is possible to bring it into the following form:

‘g[] = Kk I
g (x:xs) = f x(gxs) for any k and f

« Then:

g = foldr f k

« This gives a simple (and complete) characterization of structural recursion on lists!

Summer Term 2017 Programming Paradigms 205

A left-leaning variant of foldr

Beside foldr, there is:

foldl m(b—>a—Db)—b—[a]—Db
foldl f k [] =k
foldl f k (x:xs) = foldl f (f k x) xs

foldl f k

| f

Summer Term 2017 Programming Paradigms 206

Variations on foldl and foldr

* Returns also all the intermediate results of foldl:

scanl::(b—a—Db) — b —[a] — [b]
scanl f k xs =k : case xs of

[I =1l

X :Xs' — scanl f (f k x) xs'

>scanl (+) 0 [1 .. 5]
[0, 1, 3, 6, 10, 15]

* |n a certain sense dual to foldr:

* For example:

unfoldr :: (b — Maybe (a, b)) — b — [a]
unfoldr f b = case f b of

Nothing —[]

Just (a, b") — a : unfoldr f b’

Summer Term 2017 Programming Paradigms 207

