
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

8th Lecture

Summer Term 2017 Programming Paradigms 189

Higher-Order: somewhat artificial examples

• Function as parameter and result:

• Currying inside the language:

g :: (a ! a) ! a ! a

g f x = f (f x)

• Somewhat more explicit (with -abstraction):

g :: (a ! a) ! (a ! a)

g f = \x ! f (f x)

curry :: ((a, b) ! c) ! (a ! b ! c)

curry f = \x y ! f (x, y)

• And conversely:

uncurry :: (a ! b ! c) ! ((a, b) ! c)

uncurry f = \(x, y) ! f x y

Summer Term 2017 Programming Paradigms 190

Commonly used higher-order functions on lists (1)

• A very useful example function that takes another function as parameter,

and then applies it to all elements of a list, is the map-function:

map f [] = []

map f (x : xs) = f x : map f xs

> map square [1, 2, 3]

[1, 4, 9] :: [Integer]

> :t map

map :: (a ! b) ! [a] ! [b]

> map sqrt [2, 3, 4]

[1.41421, 1.73205, 2.0] :: [Double]

function as parameter

• Two different applications of this function:

• The function map is polymorphic:

Summer Term 2017 Programming Paradigms 192

Commonly used higher-order functions on lists (2)

• Beside map, there are several further important higher-order functions

for working with lists: filter, foldl, foldr, zipWith, scanl, scanr, …

• The function filter lets us select list elements that satisfy a certain

Boolean condition:

filter :: (a ! Bool) ! [a] ! [a]

filter p xs = [x | x Ã xs, p x]

“predicate”

> filter even [1, 2, 4, 5, 7, 8]

[2, 4, 8]

> filter even (filter (>3) [1, 2, 4, 5, 7, 8])

[4, 8]

abbreviation for \x ! x > 3

(reminder: “section”)

Summer Term 2017 Programming Paradigms 194

Effective use of higher-order functions

• Rather un-idiomatic Haskell:

• Better:

• Further functions useful for this style: zip, splitAt, takeWhile, repeat, iterate,

…

fun :: [Int] ! Int

fun [] = 0

fun (x : xs) | x < 20 = 5 * x – 3 + fun xs

| otherwise = fun xs

fun :: [Int] ! Int

fun = sum . map (\x ! 5 * x – 3) . filter (< 20)

Summer Term 2017 Programming Paradigms 195

Further examples for using higher-order functions

• What does the following function achieve (in the context of Gloss)?

• And this one?

• Something of similar spirit is part of the exercises as a bonus task.

f :: Float ! [Float ! Picture] ! (Float ! Picture)

f d fs t = pictures [translate (i * d) 0 (a t) | (i, a) Ã zip [0 ..] fs]

g :: [Float] ! [Float ! Picture] ! (Float ! Picture)

g ss fs t = pictures (map (\(s, a) ! a (s * t)) (zip ss fs))

Summer Term 2017 Programming Paradigms 196

Further examples for using higher-order functions

• Recall:

• Let’s assume we want to add subtraction and division.

• Possible problem: division by zero, hence …

data Expr = Lit Int | Add Expr Expr | Mul Expr Expr

eval :: Expr ! Int

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 * eval e2

...

eval (Sub e1 e2) = eval e1 – eval e2

eval (Div e1 e2) = eval e1 `div` eval e2

Summer Term 2017 Programming Paradigms 197

Further examples for using higher-order functions

• To take care of possible division by zero, we could proceed as follows:

• But to avoid these tedious case-cascades, abstraction of the essence into:

• And then, e.g.:

eval :: Expr ! Maybe Int

eval (Lit n) = Just n

eval (Add e1 e2) = case eval e1 of

Nothing ! Nothing

Just r1 ! case eval e2 of

Nothing ! Nothing

Just r2 ! Just (r1 + r2)

…

andThen :: Maybe a ! (a ! Maybe b) ! Maybe b

andThen m f = case m of Nothing ! Nothing

Just r ! f r

eval (Add e1 e2) = eval e1 `andThen` \r1 !

eval e2 `andThen` \r2 ! Just (r1 + r2)

Summer Term 2017 Programming Paradigms 199

Higher-Order: a somewhat more complex example, memoization (1)

• Let’s consider the following program, which is very inefficient:

fib :: Int ! Int

fib n | n < 2 = 1

fib n = fib (n – 2) + fib (n – 1)

• The inefficiency is due to the structure of the “call graph” (here for fib 6):

Summer Term 2017 Programming Paradigms 200

Higher-Order: a somewhat more complex example, memoization (2)

• Let’s consider the following program, which is very inefficient:

fib :: Int ! Int

fib n | n < 2 = 1

fib n = fib (n – 2) + fib (n – 1)

• We can make function results “reusable”, in a very canonical way, independently of

the concrete fib-function:

memo :: (Int ! Int) ! (Int ! Int)

memo f = g

where g n = table !! n

table = [f n | n Ã [0 ..]]

> let mfib = memo fib

> mfib 30

1346269 -- after a few seconds

> mfib 30

1346269 -- “immediately”

Summer Term 2017 Programming Paradigms 201

Higher-Order: a somewhat more complex example, memoization (3)

• It is even better to exploit memoization also inside the recursion:

mfib = memo fib

fib :: Int ! Int

fib n | n < 2 = 1

fib n = mfib (n – 2) + mfib (n – 1)

• Since then:

> fib 30

1346269 -- “immediately”

> fib 31

2178309 -- “even faster”

• “Call graph” now:

Summer Term 2017 Programming Paradigms 202

Structural recursion on lists as a higher-order function

foldr :: (a ! b ! b) ! b ! [a] ! b

foldr f k [] = k

foldr f k (x : xs) = f x (foldr f k xs)

sum [] = 0

sum (x : xs) = x + sum xs

prod [] = 1

prod (x : xs) = x  prod xs

• The list functions for summing or multiplying list elements use the same

recursion pattern, which can be realized with the help of a standard function

for “folding” binary operators over lists:

(..r for “right”;

there is also a foldl)

• For example, definitions of sum and prod as applications of foldr:

sum, prod :: [Int] ! Int

sum = foldr (+) 0

prod = foldr (*) 1

Summer Term 2017 Programming Paradigms 203

Visualization of foldr







1

2

3

[]

:

:

:

foldr f k







1

2

3

k

f

f

f

Summer Term 2017 Programming Paradigms 204

Further examples for using foldr

• By using foldr, there are predefined logical junctors that operate on implementiert,

lists of Boolean values:

and, or :: [Bool] ! Bool

and = foldr (&&) True

or = foldr (| |) False

• “Quantors” over lists are realized as generalizations of these junctors via

composition:

any, all :: (a ! Bool) ! [a] ! Bool

any p = or . map p

all p = and . map p

e.g.: all (<100) [x^2 | x Ã [1 .. 19]]

Summer Term 2017 Programming Paradigms 205

General strategy for using foldr

• When can a function be expressed using foldr?

g [] = k

g (x : xs) = f x (g xs)

• Whenever it is possible to bring it into the following form:

for any k and f

g = foldr f k

• Then:

• This gives a simple (and complete) characterization of structural recursion on lists!

Summer Term 2017 Programming Paradigms 206

A left-leaning variant of foldr

foldl :: (b ! a ! b) ! b ! [a] ! b

foldl f k [] = k

foldl f k (x : xs) = foldl f (f k x) xs

Beside foldr, there is:







1

2

3

[]

:

:

:

foldl f k







1

2

3

k

f

f

f

Summer Term 2017 Programming Paradigms 207

Variations on foldl and foldr

scanl :: (b ! a ! b) ! b ! [a] ! [b]

scanl f k xs = k : case xs of

[] ! []

x : xs' ! scanl f (f k x) xs'

• Returns also all the intermediate results of foldl:

• For example:

• In a certain sense dual to foldr:

> scanl (+) 0 [1 .. 5]

[0, 1, 3, 6, 10, 15]

unfoldr :: (b ! Maybe (a, b)) ! b ! [a]

unfoldr f b = case f b of

Nothing ! []

Just (a, b') ! a : unfoldr f b'

