
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

9th Lecture

Summer Term 2017 Programming Paradigms

Programming Paradigms

Input and output in Haskell

Summer Term 2017

Input/output in Haskell, very simple example

Programming Paradigms 221

• Even in declarative languages, there should be some (disciplined) way to embed

“imperative” commands like “print something to the screen”.

• In pure functions, no such interaction with the OS / user / … is possible.

• But there is a special do-notation in Haskell that enables interaction, and from

which one can call “normal” functions.

5

8

1680

Simple example:

prod :: [Int] ! Int

prod [] = 1

prod (x : xs) = x * prod xs

main = do n Ã readLn

m Ã readLn

print (prod [n .. m])

pure function

“main program”

program execution

Input

Input

Output

Summer Term 2017

putChar :: Char ! IO ()

putStr, putStrLn :: String ! IO ()

print :: Show a) a ! IO ()

• The interpretation of a type IO a is that elements of that type are not themselves

concrete values, but instead are (potentially arbitrarily complex) sequences of

input and output operations, and computations depending on values read in,

by which ultimately a value of type a is created.

• An (independently executable) Haskell program overall always has an “IO type”,

usually simply main :: IO ().

• To actually create “IO values”, there are predefined primitives (and one can

recognize their IO-related character based on their types):

Principles of input/output in Haskell: IO types …

Programming Paradigms 222

getChar :: IO Char

getLine :: IO String

readLn :: Read a) IO a

• There is a predefined type constructor IO, such that for every concrete type like

Int, Bool, [(Int, Tree Bool)] etc., the type IO Int, IO Bool, … can be built.

Summer Term 2017

• To combine IO-computations (i.e., to build more complex action sequences based

on the IO primitives), there is the do-notation.

• General form:

where each cmdi has an IO type and to each xi (if explicitly present) a value of the

type encapsulated in the cmdi will be bound (and can, from this point onwards,

be used in the whole do-block), namely exactly the result of executing cmdi.

• Often also useful (e.g., at the end of a do-block): a predefined function

return :: a ! IO a that simply yields its argument, without any actual IO action.

Principles of input/output in Haskell : … and do-notation

Programming Paradigms 223

do cmd1

x2 Ã cmd2

x3 Ã cmd3

cmd4

x5 Ã cmd5

…

The do-block as a whole has

the type of the last cmdn.

For that last command,

generally no xn is present.

Summer Term 2017

• A slightly more complex example:

• What is never ever, at all, possible or allowed is to directly extract (beyond the explicit

sequentialisation and binding structure within do-blocks) the encapsulated value

from an IO computation, i.e., to simply turn an IO a value into an a value.

• Beside the shown example primitives for console input/output, there are primitives

and libraries for file input/output, network communicaton, GUIs, …

• Of course, also in the context of IO related computations, all features and abstraction

concepts of Haskell are available, so we define functions with recursion, use data types,

polymorphism, higher-order, …

Principles of input/output in Haskell: IO types and do-notation

Programming Paradigms 224

dialog = do putStr "Input: "

s Ã getLine

if s == "end"

then return ()

else do let n = read s

putStrLn ("Output: " ++ show (n * n))

dialog

Summer Term 2017

• As emphasized, also in the context of IO related computations, all abstraction

concepts of Haskell are available, particularly polymorphism and definition of

higher-order functions.

• This can be employed for things like:

• So what will be the behaviour/output of the following expression?

User defined “control structures”

Programming Paradigms 226

while :: (a ! Bool) ! (a ! IO a) ! (a ! IO a)

while p body = loop

where loop x = if p x then do x' Ã body x

loop x'

else return x

> while (< 10) (\n ! do {print n; return (n + 1)}) 0

Summer Term 2017 Programming Paradigms 228

Functional programming in Haskell: summary (1)

• principle of functional programming:

• specification = collection of function definitions

• function definition = system of defining equations

• operationalisiation = step-wise reduction of expressions to values

• expressions:

• constants, variables, structured expressions: lists, tuples

• function applications

• list comprehensions

• systems of defining equations:

• left- and right-hand sides with certain restrictions (e.g., concerning variable use)

• multiple parameters, pattern matching

• guards

• syntactic particularities of Haskell:

• deviation from mathematical notation in function syntax

• local definitions (let, where)

• layout rule

Summer Term 2017 Programming Paradigms 229

Functional programming in Haskell: summary (2)

• reduction / evaluation:

• pattern matching, selecting the case to use, recursion

• lazy evaluation

• special role of IO, do-blocks

• lists:

• sequential notation vs. tree representation (:), pattern matching

• specific list functions (e.g., length, ++, !!)

• arithmetic sequences, infinite lists, list comprehensions

• types (strong typing, type checking, type inference):

• data types

• base types (Integer etc.)

• structured types (lists, tuples)

• algebraic data type declarations, constructors

• polymorphic types, type variables

• function types

• function type declarations, currying

• type classes, declarations, instance definitions

Summer Term 2017 Programming Paradigms 230

Functional programming in Haskell: summary (3)

• higher-order functions:

• functions as parameters and/or as results

• partial application, sections

• lambda-expressions

• higher-order functions on lists: map, filter, foldr, …

• use of explicit recursion schemes (capturing structural recursion as foldr)

