
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

10th Lecture

Summer Term 2017 Programming Paradigms 235

Recall: Ideal (and to some extent, history) of declarative programming

process

specification

Freeing the programmer from the necessity to explicitly plan and specify the

computation process that leads to a problem solution: “What instead of How”

???

problem

specification
Problem

Process

How?

What?

human

intelligence

artificial

“intelligence”

!!!

Solution
/

operationalisation

Summer Term 2017 Programming Paradigms 236

A famous logical puzzle as a declaratively specified problem

“There are five houses, each of a different color and inhabitated by a man of a different

nationality with a different pet, drink and brand of smokes …”

(“Einstein‘s Riddle”, see http://en.wikipedia.org/wiki/Zebra_Puzzle)

Summer Term 2017 Programming Paradigms 237

Puzzle (1)

Overall there are 14 clues that define the “world” of the puzzle:

1. The Englishman lives in the red house.

2. The Spaniard owns the dog.

3. Coffee is drunk in the green house.

4. The Ukrainian drinks tea.

5. The green house is immediately to the right of the ivory house.

6. The Winston smoker owns snails.

7. Kools are smoked in the yellow house.

8. Milk is drunk in the middle house.

9. The Norwegian lives in the leftmost house.

10. The man who smokes Chesterfield lives in the house next to

the man with the fox.

11. Kools are smoked in the house next to the house where the

horse is kept.

12. The Lucky Strike smoker drinks orange juice.

13. The Japanese smokes Parliaments.

14. The Norwegian lives next to the blue house.

Summer Term 2017 Programming Paradigms 238

Puzzle (2)

Who owns the zebra ?

Who drinks water ?

The problem posed:

Summer Term 2017 Programming Paradigms 239

Puzzle (3)

Systematic construction of the solution (by a human):

house 1 2 3 4 5

color

nationality

drink

pet

smoke

milk

Norwegian

blue

8.14.

9.

The are three certain assignments – these should be fixed first!

9. The Norwegian lives in the leftmost house.

14. The Norwegian lives next to the blue house.

8. Milk is drunk in the middle house.

Summer Term 2017 Programming Paradigms 240

Puzzle (4)

house 1 2 3 4 5

color

nationality

drink

pet

smoke

milk

Norwegian

blue ivory greenivory green

5.

Condition 5:

coffee

3.

A direct consequence of this would be:

5. The green house is immediately to the right

of the ivory house.

3. Coffee is drunk in the green house.

coffee

?

?

… allows only two possibilities:

Summer Term 2017 Programming Paradigms 241

Puzzle (5)

house 1 2 3 4 5

color

nationality

drink

pet

smoke

milk

Norwegian

blue ivory green

coffee

If the 1. solution for ivory/green is correct,

red

English

1.

yellow

then also necessarily

Kools

7.

horse

11.

etc. …

1. The Englishman lives in the red house.

7. Kools are smoked

in the yellow house.

11. Kools are smoked in the house next to the

house where the horse is kept.

necessarily the position for red:

Summer Term 2017 Programming Paradigms 242

yellow blue red ivory green

Norwegian Ukrainian English Spanish Japanese

water tea milk juice coffee

fox horse snails dog zebra

Kools Chesterfield Winston Lucky Strike Parliaments

Puzzle (6)

Unique solution of the puzzle (to be found via several backtracking steps):

house 1 2 3 4 5

color

nationality

drink

pet

smoke

Summer Term 2017 Programming Paradigms 245

Algorithm = Logic + Control

„An algorithm can be regarded as consisting of a logic component, which

specifies the knowledge to be used in solving problems, and a control

component, which determines the problem-solving strategies by means of

which that knowledge is used. The logic component determines the

meaning of the algorithm whereas the control component only affects its

efficiency.

The efficiency of an algorithm can often be improved by improving the

control component without changing the logic of the algorithm. We argue

that computer programs would be more often correct and more easily

improved and modified if their logic and control aspects were identified

and separated in the program text.“
Robert Kowalski, 1979

Summer Term 2017 Programming Paradigms 246

right_of(R, L, [L | [R | _]]).

right_of(R, L, [_ | Rest]) :- right_of(R, L, Rest).

next_to(X, Y, List) :- right_of(X, Y, List).

next_to(X, Y, List) :- right_of(Y, X, List).

zebra(Zebra_Owner) :-

Houses = [[_, norwegian, _, _, _], _, [_, _, milk, _, _], _, _],

member([red, englishman, _, _, _], Houses),

member([_, spaniard, _, dog, _], Houses),

member([green, _, coffee, _, _], Houses),

member([_, ukrainian, tea, _, _], Houses),

right_of([green, _, _, _, _], [ivory, _, _, _, _], Houses),

member([_, _, _, snails, winston], Houses),

member([yellow, _, _, _, kools], Houses),

next_to([_, _, _, _, chesterfield], [_, _, _, fox, _], Houses),

next_to([_, _, _, _, kools], [_, _, _, horse, _], Houses),

member([_, _, juice, _, lucky], Houses),

member([_, japanese, _, _, parliaments], Houses),

next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Houses),

member([_, Zebra_Owner, _, zebra, _], Houses),

member([_, _, water, _, _], Houses).

Puzzle: one possible specification in Prolog

8. 9.

1.

2.

3.

4.

5.

6.

7.

10.

11.

12.

13.

14.

?

?

Summer Term 2017 Programming Paradigms 260

History of Prolog

• Prolog as name is abbreviated from “Programming with logic”.

• It is the most common logic programming language.

• Some history on Prolog:

1965: John Alan Robinson provides theoretical foundations for

theorem provers using the resolution calculus.

1972: Alain Colmerauer (Marseilles) and his group develop Prolog.

in the '70s: David D.H. Warren builds the first Prolog compiler.

1981–92: 5th Generation Computer Project in Japan (made Prolog “popular”)

Summer Term 2017 Programming Paradigms 261

Literature on Prolog

Patrick Blackburn, Johan Bos,

Kristina Striegnitz:

„Learn Prolog Now!“

College Publications, 2006

• A lot of books and tutorials exist.

• The slides use a lot of examples from this book:

Summer Term 2017 Programming Paradigms

Programming Paradigms

Prolog Basics/Syntax

Summer Term 2017 Programming Paradigms 263

Prolog in simplest case: facts and queries

• A kind of data base with a number of facts:

• Queries:

woman(mia).

woman(jody).

woman(yolanda).

playsAirGuitar(jody).

?- woman(mia).

true.

?- playsAirGuitar(jody).

true.

?- playsAirGuitar(mia).

false.

?- playsAirGuitar(vincent).

false.

?- playsPiano(jody).

false.

The dot is essential!

or an error message

Summer Term 2017 Programming Paradigms 264

Facts + simple implications

• Queries:

happy(yolanda).

listens2Music(mia).

listens2Music(yolanda) :- happy(yolanda).

playsAirGuitar(mia) :- listens2Music(mia).

playsAirGuitar(yolanda) :- listens2Music(yolanda).

?- playsAirGuitar(mia).

true.

?- playsAirGuitar(yolanda).

true.

“if”

Head Body

happy(yolanda)

 listens2Music(yolanda)

 playsAirGuitar(yolanda)

because of:

Summer Term 2017 Programming Paradigms 265

More complex rules

• Queries:

• Alternative notation:

happy(vincent).

listens2Music(butch).

playsAirGuitar(vincent) :- listens2Music(vincent),

happy(vincent).

playsAirGuitar(butch) :- happy(butch).

playsAirGuitar(butch) :- listens2Music(butch).

?- playsAirGuitar(vincent).

false.

?- playsAirGuitar(butch).

true.

“and”

Alternatives

...

playsAirGuitar(butch) :- happy(butch);

listens2Music(butch).

“or”

Summer Term 2017 Programming Paradigms 266

Relations, and more complex queries

• Queries:

woman(mia).

woman(jody).

woman(yolanda).

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

loves(vincent,vincent).

?- woman(X).

X = mia ;

X = jody ;

X = yolanda.

?- loves(vincent,X).

X = mia ;

X = vincent.

?- loves(vincent,X), woman(X).

X = mia ;

false.

multi-ary (concretely, binary)

predicate

semicolon entered by user

Summer Term 2017 Programming Paradigms 267

Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z).

?- jealous(marsellus,X).

X = vincent ;

X = marsellus ;

false.

?- jealous(X,_).

X = vincent ;

X = vincent ;

X = marsellus ;

X = marsellus ;

X = mia.

anonymous variable

Summer Term 2017 Programming Paradigms 268

Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

X = vincent ;

false.

?- jealous(X,_).

X = vincent ;

X = marsellus ;

false.

?- jealous(X,Y).

X = vincent,

Y = marsellus ;

X = marsellus,

Y = vincent ;

false.

important that at end

Summer Term 2017 Programming Paradigms 269

Some observations on variables

• Variables in rules and in queries are independent from each other.

• Within a rule or a query, the same variables represent the same objects.

• But different variables do not necessarily represent different objects.

• It is possible to have several occurrences of the same variable in a rule’s head!

• In a rule’s body there can be variables that do not occur in its head!

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

X = vincent ;

false.

Summer Term 2017 Programming Paradigms 270

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:

if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

???

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

Summer Term 2017 Programming Paradigms 271

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:

if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

Summer Term 2017 Programming Paradigms 272

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

• Logically equivalent, for arbitrary (but fixed) X , Y:

if for any choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,

then also holds: jealous(X,Y)

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

Summer Term 2017 Programming Paradigms 273

Syntax / notions in Prolog

istVaterVon(kurt,fritz).

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V), istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M), istMutterVon(M,E).

?- istGrossvaterVon(kurt,paul).

?- istGrossvaterVon(kurt,fritz).

?- istGrossvaterVon(kurt,E).

?- istGrossvaterVon(G,paul).

rules

literal

queries

facts

clauses

conjunction

implication

predicate constant

variable

Summer Term 2017 Programming Paradigms 274

Language objects in Prolog

• To build clauses, Prolog uses different kinds of objects:

- constants (numbers, strings, …)

- variables (X,Y, ThisThing, …)

- operator terms (… 1 + 3 * 4 …)

- structures (date(27,11,2007), person(fritz, mueller), …

composite, recursive, “infinite”, …)

• Note: Prolog has no type system!

Summer Term 2017 Programming Paradigms 275

Language objects in Prolog

• Numbers
-17 -2.67e+021 0 1 99.9 512

Constants in Prolog

• Atoms, i.e. strings that satisfy one of these rules:

1. The string starts with a lower case letter, followed by arbitrarily many
lower or upper case letters, numbers and underscores '_'.

2. The string starts and ends with an apostrophe ('). In between, there
can be arbitrary characters. If an apostrophe should appear in the string,
it has to be denoted twice.

3. The string consists only of symbols.

correct: fritz new_york :- --> I dont know!

wrong: Fritz new-york _xyz 123

Summer Term 2017 Programming Paradigms 276

Language objects in Prolog

Variables in Prolog

• Variables:

- Name starts with an upper case letter or an underscore '_'.

- Examples: Land Jahr M V _45 _G107 _europa

• Anonymous variables (simply '_', even if several anonymous variables):

- if the object is not of interest:

?- istVaterVon(_,fritz).

internal format

for variables

