
Summer Term 2017 Programming Paradigms

Prof. Janis Voigtländer

University of Duisburg-Essen

Summer Term 2017

Programming Paradigms

12th Lecture

Summer Term 2017

TP() = {add(0,0,0), add(0,s(0),s(0)), …}  {mult(0,0,0),

mult(0,s(0),0), …}  {mult(s(0),0,0), …}

TP(TP()) = TP()  {add(s(0),0,s(0)), add(s(0),s(0),s(s(0))), …}

 {mult(s(0),s(0),s(0))}

TP(TP(TP())) = TP(TP())  {add(s(s(0)),0,s(s(0))), …}

 {mult(s(0),s(s(0)),s(s(0))),

mult(s(s(0)),s(0),s(s(0)))}

TP
4() = TP

3()  {add(s3(0),0,s3(0)), add(s3(0),s(0),s4(0)), …}

 {mult(s(0),s3(0),s3(0)), mult(s2(0),s2(0),s4(0)),

mult(s3(0),s(0),s3(0))}

Programming Paradigms 316

Applicability of the semantics based on Herbrand models

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),s(Y),s(Z)) :- mult(X,s(Y),U), add(Y,U,Z).

Summer Term 2017 Programming Paradigms 318

Applicability of the semantics based on Herbrand models

The declarative semantics:

• is only applicable to certain, “purely logical”, programs

• does not directly describe the behaviour for queries containing variables

• is mathematically simpler than the still to be introduced operational semantics

• can be related to that operational semantics appropriately

• is insensitive against changes to the order of, and within, facts and rules (!)

Summer Term 2017 Programming Paradigms

Programming Paradigms

Operational semantics of Prolog

Summer Term 2017 Programming Paradigms 331

Motivation: Observing some not so nice (not so “logical”?) effects

direct(frankfurt,san_francisco).

direct(frankfurt,chicago).

direct(san_francisco,honolulu).

direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).

connection(X, Y) :- direct(X, Z), connection(Z, Y).

?- connection(frankfurt,maui).

true.

?- connection(san_francisco,X).

X = honolulu ;

X = maui ;

false.

?- connection(maui,X).

false.

Summer Term 2017 Programming Paradigms 332

Motivation: Observing some not so nice (not so “logical”?) effects

direct(frankfurt,san_francisco).

direct(frankfurt,chicago).

direct(san_francisco,honolulu).

direct(honolulu,maui).

connection(X, Y) :- connection(X, Z), direct(Z, Y).

connection(X, Y) :- direct(X, Y).

?- connection(frankfurt,maui).

ERROR: Out of local stack

• Apparently, the implicit logical operations are not commutative.

• So underlying the program execution, there must be more than the purely logical reading.

Summer Term 2017 Programming Paradigms 333

Somewhat more subtle…

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X).

?- sub(s(s(0)),s(0),N).

N = s(0) ;

false.

?- sub(N,M,s(0)).

N = s(0),

M = 0 ;

N = s(s(0)),

M = s(0) ;

add(X,0,X).

add(X,s(Y),s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X).

…

?- sub(N,M,s(0)).

N = s(M) ;

false.

So the choice/treatment of

the order of arguments in

definitions affects the

quality of results.

Summer Term 2017 Programming Paradigms 334

… and (thus) sometimes less flexibility than desired

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

The nicely descriptive solution:

works very well for several kinds of queries:

But there are also “outliers”:

?- mult(s(s(0)),s(s(s(0))),N).

N = s(s(s(s(s(s(0)))))).

?- mult(s(s(0)),N,s(s(s(s(0))))).

N = s(s(0)) ;

false.

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

abort otherwise infinite search

One says that mult supports the

“call modes” mult(+X,+Y,?Z)

and mult(+X,?Y,+Z)

… but not
mult(?X,?Y,+Z).

Summer Term 2017 Programming Paradigms 335

… and (thus) sometimes less flexibility than desired

Whereas with just addition:

the analogous call mode seemed to work pretty well:

1. So why the difference?

2. And what can one do to also let mult function this way?

?- add(N,M,s(s(s(0)))).

N = 0,

M = s(s(s(0))) ;

N = s(0),

M = s(s(0)) ;

N = s(s(0)),

M = s(0) ;

N = s(s(s(0))),

M = 0 ;

false.

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

Indeed, add supports

all call modes, even
add(?X,?Y,?Z).

Summer Term 2017 Programming Paradigms 336

Moreover, caution needed when using/positioning negative literals

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

false.

?- jealous(X,_).

false.

?- jealous(X,Y).

false.

And now it gets really “strange”:

...

jealous(X,Y) :- X \= Y, loves(X,Z), loves(Y,Z).

small change

Whereas before the

small change, we got

meaningful results for

these queries!

Summer Term 2017 Programming Paradigms 337

Operational semantics of Prolog

To investigate all these phenomena, we have to consider the concrete execution

mechanism of Prolog.

Ingredients for this discussion of the operational semantics, considered in what

follows:

1. Unification

2. Resolution

3. Derivation trees

Summer Term 2017 Programming Paradigms

Programming Paradigms

Unification

Summer Term 2017 Programming Paradigms 339

Analogy to Haskell: Pattern matching

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

?- add(s(s(0)),s(0),s(s(s(0)))).

?- add(s(0),s(0),s(s(0))).

?- add(0,s(0),s(0)).

?- .

true.

Summer Term 2017 Programming Paradigms 340

But what about “output variables”?

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

?- add(s(s(0)),s(0),N).

?

Summer Term 2017 Programming Paradigms 358

Unification as “bidirectional pattern matching”

Equality “=” as binary Prolog predicate that accomplishes a lot:

• performing comparisons on ground terms (terms without variables), e.g.:
s(0)=s(0)) true

s(0)=s(s(0))) false

• accepting bindings of variables, e.g.:
N=0) true

N=s(U)) true

s(0)=N) true

M=V) true

• structurally matching and binding, e.g.:
s(s(0))=s(V)) V=s(0)

s(U)=s(0)) U=0

• “collecting”/combining bindings, e.g.:
N=s(V), M=V) N=s(M)

Summer Term 2017 Programming Paradigms 359

Equality of terms (1)

• Checking equality of ground terms:

europe = europe ? yes

person(fritz,mueller) = person(fritz,mueller) ? yes

person(fritz,mueller) = person(mueller,fritz) ? no

5 = 2 ? no

5 = 2 + 3 ? no

2 + 3 = +(2, 3) ? yes

 Equality of terms means structural equality.

Terms are not “evaluated” before a comparison!

Summer Term 2017 Programming Paradigms 360

Equality of terms (2)

• Checking equality of terms with variables:

person(fritz, Lastname, datum(27, 11, 2007))

= person(fritz, mueller, datum(27, MM, 2007)) ?

• For a variable, any term may be substituted:

- in particular mueller for Lastname and 11 for MM.

- After this substitution both terms are equal.

Summer Term 2017 Programming Paradigms 361

Equality of terms (3)

Which variables have to be substituted how, in order to make the terms equal?

As a reminder, list syntax:

date(1, 4, 1985) = date(1, 4, Year) ?

date(Day, Month, 1985) = date(1, 4, Year) ?

a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,g(H,i,K))) ?

X = Y + 1 ?

[[the, Y]|Z] = [[X, dog], [is, here]] ?

And what about:
p(X) = p(q(X)) ?

“occurs check” (see later)

[1,2,a] = [1|[2,a]] = [1,2|[a]] = [1,2|.(a,[])] = .(1,.(2,.(a,[])))

Summer Term 2017 Programming Paradigms 362

Equality of terms (4)

Some further (problematic) cases:

loves(vincent, X) = loves(X, mia) ?

loves(marcellus, mia) = loves(X, X) ?

a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,p(H,i,K))) ?

p(b,b) = p(X) ?

…

Summer Term 2017

Substitution:

• Replacing variables by other variables or other kinds of terms

(constants, structures, …)

• A function which uniquely maps each term to a new term, where the new term

differs from the old term only by replacement of variables.

• Notation: U = {Lastname / mueller, MM / 11}

• The substitution U changes only the variables Lastname and MM,

everything else stays unchanged!

• U(person(fritz, Lastname, datum(27, 11 2007)))

== person(fritz, mueller, datum(27, 11, 2007))

Programming Paradigms 364

Unification, formally (1)

Summer Term 2017 Programming Paradigms 365

Unification, formally (2)

• Unifier:

- substitution that makes two terms equal

- e.g., application of the substitution U = { Lastname/mueller, MM/11 } :

U(person(fritz,Lastname,date(27,11 2007)))

== U(person(fritz,mueller,date(27,MM,2007)))

• Most general unifier:

- unifier that leaves as many as possible variables unchanged

- Example: date(DD,MM,2007) and date(D,11,Y)

- U1 = { DD/27, D/27, MM/11, Y/2007 }

- U2 = { DD/D, MM/11, Y/2007 }

• Prolog always looks for a most general unifier.



✓

Summer Term 2017 Programming Paradigms 366

Unification, formally (3) – Computing a most general unifier

Input: two terms T1 and T2 (in general possibly containing common variables)

Output: a most general unifier U for T1 and T2 in case T1 and T2 are unifiable,

otherwise failure

Algorithm:

1. If T1 and T2 are the same constant or variable,

then U = 

2. If T1 is a variable that does not occur in T2,

then U = {T1 / T2}

3. If T2 is a variable that does not occur in T1,

then U = {T2 / T1}

“occurs check”

Summer Term 2017 Programming Paradigms 367

Unification, formally (4) – Computing a most general unifier

Algorithm (cont.):

4. If T1 = f(T1,1,...,T1,n) and T2 = f(T2,1,...,T2,n) are structures with the same

functor and the same number of components, then

1. Find a most general unifier U1 for T1,1 and T2,1

2. Find a most general unifier U2 for U1(T1,2) and U1(T2,2)

…

n. Find a most general unifier Un for

Un-1(...(U1(T1,n)...) and Un-1(...(U1(T2,n))...)

If all these unifiers exist, then

U = Un ± Un-1 ± ... ± U1 (function composition of the unifiers)

5. Otherwise: T1 and T2 are not unifiable.

Summer Term 2017 Programming Paradigms 368

Unification – Examples

date(1, 4, 1985) = date(1, 4, Year) ?

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for 1 and 1

) same constants, thus U1 = 

2. Find a most general unifier U2 for U1(4) and U1(4)

) same constants, thus U2 = 

3. Find a most general unifier U3 for U2(U1(1985)) and U2 (U1(Year))

) constant vs. variable, thus U3 = {Year /1985}

A most general unifier overall is:

U = U3 ± U2 ± U1 = {Year /1985}

Summer Term 2017 Programming Paradigms 369

Unification – Examples

loves(marcellus, mia) = loves(X, X) ?

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for marcellus and X

) constant vs. variable, thus U1 = {X /marcellus}

2. Find a most general unifier U2 for U1(mia) = mia and U1(X) = marcellus

) different constants, hence U2 does not exist!

Consequently, also no unifier exists for the original terms!

Summer Term 2017 Programming Paradigms 370

Unification – Examples

d(E,g(H,J)) = d(F,g(H,E)) ?

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for E and F

) different variables, thus U1 = {E/F}

2. Find a most general unifier U2 for U1(g(H,J)) and U1(g(H,E))

g(H,J) = g(H,F) ?

) Structures with the same functor, same number of components, hence:

- Find a most general unifier U2,1 for H and H

) same variables, thus U2,1 = 

- Find a most general unifier U2,2 for U2,1(J) and U2,1(F)

) different variables, thus U2,2 = {F/J}

U2 = U2,2 ± U2,1 = {F/J}

A most general unifier overall is:

U = U2 ± U1 = {E/J , F/J}

Summer Term 2017 Programming Paradigms 371

Relevance of the “occurs check”

As a reminder:

2. If T1 is a variable that does not occur in T2,

then U = {T1 / T2}

3. If T2 is a variable that does not occur in T1,

then U = {T2 / T1}

“occurs check”

X = q(X) ?

So, for example:

) No unifier exists.

But in Prolog this check is actually not performed by default!

Summer Term 2017 Programming Paradigms 372

Relevance of the “occurs check”

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for X and q(X)

) variable vs. term, thus U1 = {X /q(X)}

U = U1 = {X /q(X)} !

p(X) = p(q(X))?

Without “occurs check”:

Although it actually is not true that U(p(X)) and U(p(q(X))) are equal!

Summer Term 2017 Programming Paradigms

Programming Paradigms

Resolution

Summer Term 2017 Programming Paradigms 375

Resolution in Prolog (1)

Resolution (proof principle) – without variables

One can reduce proving the query

?- P, L, Q. (let L be a variable free literal and P and Q be sequences of such)

to proving the query

?- P, L1, L2, ... , Ln, Q.

provided that L :- L1, L2, ..., Ln. is a clause in the program (where n  0).

- The choice of the literal L and the clause to use are in principle arbitrary.

- If n = 0, then the query becomes smaller by the resolution step.

Summer Term 2017 Programming Paradigms 378

Resolution in Prolog (2)

One can reduce proving the query

?- P, L, Q. (let L be a literal and P and Q be sequences of literals)

to proving the query

?- U(P), U(L1), U(L2), ... , U(Ln), U(Q).

provided that:

- there is a program clause L0:- L1, L2, ..., Ln. (where n  0),

with – just in case – renamed variables (so that there is no overlap with
those in P, L, Q),

- and U is a most general unifier for L and L0.

Resolution – with variables

Summer Term 2017 Programming Paradigms

Programming Paradigms

Derivation trees

Summer Term 2017 Programming Paradigms 390

Reminder: Motivation for considering operational semantics…

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

We wanted to understand why, for example, for

several kinds of queries/“call modes” work very well:

but others don’t:

?- mult(s(s(0)),s(s(s(0))),N).

N = s(s(s(s(s(s(0)))))).

?- mult(s(s(0)),N,s(s(s(s(0))))).

N = s(s(0)) ;

false.

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

abort otherwise infinite search

Summer Term 2017 Programming Paradigms 391

Explicit enumeration of solutions

Exhaustive search:

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

?- add(N,M,s(s(0))).

{N/0,M/s(s(0)),X/s(s(0))}

□

{N/s(X1),M/Y1,Z1/s(0)}

?- add(X1,Y1,s(0)).

{X1/0,Y1/s(0),X2/s(0)}

□

{X1/s(X3),Y1/Y3,Z3/0}

?- add(X3,Y3,0).

{X3/0,Y3/0,X4/0}

□

N=0, M=s(s(0))

N=s(0), M=s(0)

N=s(s(0)), M=0

Let us start with a simple example just for addition:

