Programming Paradigms

Summer Term 2017

14t |ecture

Prof. Janis Voigtlander
University of Duisburg-Essen

Summer Term 2017 Programming Paradigms



Logic programming: summary (1)

« principle of logic programming:
 specification = collection of predicate definitions
 predicate definition = sequence of clauses (facts and rules)
« Operationalisation =
« essentially: step-wise resolution of (positive) literals
* but also:
« sequential (left-to-right) execution of conjunctions
« backtracking (constrained by Cut-operator, which we haven’t looked at)

 expressions/terms:
 constants, variables
« composite expressions: lists, structures (uninterpreted terms)
 evaluable expressions: only for built-in arithmetic operators in is-literals

* no nested predicate applications

* literals:
« atomic formulas (with parameter list consisting of terms)
« negated literals possible: not, \+, \=
« literals with built-in predicates possible (e.g. is- or comparison literals)

Summer Term 2017 Programming Paradigms 648



Logic programming: summary (2)

clauses:
« facts: positive literals
* rules:
* head: positive literal
 body: literal or conjunction of literals, possibly negative ones
* recursion

declarative semantics: motivated by logical model theory

resolution/derivation trees:
 unification as “two-way”’-parameter passing, free variables, call modes
 in special cases: analogous to pattern matching in Haskell
 different clauses for same predicate are all explored
(in top-down order), nondeterminism
« operational impact of order of literals within a clause

non-logical features:
« negation as failure
e some others (...)

Summer Term 2017 Programming Paradigms 649



Programming Paradigms

‘ Prolog extension: DCGs I

Summer Term 2017 Programming Paradigms



Symbolic language processing/representation (1)

« Assume we want to model sentences of the English language.
* \We need different categories of words and sentence parts:
verb, noun, verb phrase, ...

as well as rules for grammatically correct combination of those:

sentence - noun phrase, verb phrase
noun phrase - determiner, noun
verb phrase - verb, noun phrase

* And, of course, a mechanism for “executing” such a grammar.

Summer Term 2017 Programming Paradigms 652



Symbolic language processing/representation (2)

Simple realization in Prolog:

« Word categories + rules:

det ([the]) .
det([a]) .

n([woman]) .
n([man]) .

v ([knows]) .

np(zZ) :- det(X), n(Y), append(X,Y,Z).

Vp(Z) - V(X) ’ nP(Y) ’ append(errZ) .
vp(2) :- v(2).

S(Z) ‘- np(X), VP(Y)I append(errz) .

* Usage:

?- s([a,woman,knows,a,man]) .

frue. So_mewhat
nice, but

?- s ([the,woman,knows]) . potentially

true. quite

27— s(2). inefficient due

Z = [the, woman, knows, the, woman] ; to the way of

using append!

Z = [a, man, knows]. J app

Summer Term 2017

Programming Paradigms 653



Symbolic language processing/representation (3)

Special Prolog feature: “Definite Clause Grammars”

Usage (with special role of second argument, instantiated with empty list):

det --> [the].
det --> [a].

n --> [woman].
n --> [man].

v --> [knows].

np --> det, n.

vp --> v, np.
vp —--> V.

s --> np, VvVp.

?- s([a,woman,knows,a,man], []) .
true.

?- s([the,woman,hknows], []) .

true.

2= S(ZI[])'

Z = [the, woman, knows, the, woman] ;
Z = [a, man, knows].

Summer Term 2017

Programming Paradigms

657




Symbolic language processing/representation (4)

So far we can only test or generate:

?- s([a,woman,knows,a,man], []) .

true.

2= S(ZI[])'

Z = [the, woman, knows, the, woman] ;
Z = [a, man, knows].

In addition, we would like to truly “parse”, that is, with output of sentence structure.

By adding a syntax tree argument:

det (td) --> [the].

det (td) --> [a]. np (tnp(T,S)) --> det(T), n(S).

vp (tvp(T,S)) --> v(T), np(S).

n(tn) --> [woman]. vp (tvp (T)) -=> v(T) .

n(tn) --> [man].

s(ts(T,S)) --> np(T), vp(S).

v(tv) --> [knows].

Summer Term 2017 Programming Paradigms 658



Symbolic language processing/representation (5)

n(tn) --> [man].

v(tv) --> [knows].

det (td) --> [the].
det(td) --> [a].
n(tn) --> [woman]. vp (tvp(T,S)) --> v(T), np(S).

?- s(T,[a,woman,knows,a,man], []) .
T ts(tnp(td, tn) ,tvp(tv,tnp(td,tn))).

Y= S(TIZI []) .

T = ts(tnp(td, tn) ,tvp(tv,tnp(td,tn))),
Z = [the, woman, knows, the, woman] ;
T = ts(tnp(td, tn) ,tvp(tv)),

Z = [a, man, knows].

np (tnp(T,S)) --> det(T), n(S).

vp (tvp (T)) -=> v(T).

s(ts(T,S)) --> np(T), vp(S).

Summer Term 2017

Programming Paradigms

659




Symbolic language processing/representation (6)

Another sensible use of additional arguments: grammatical features.

« Assume we want to introduce pronouns:

det --> [the].
det --> [a].

n --> [woman].
n --> [man].

v --> [knows].

pro --> [he].

pro --> [she].
pro --> [him].
pro —--> [her].

. Hmm:
?- s(z,[]).

Z = [he, knows, he] ;

Z = [he, knows, she] ; ..

Summer Term 2017 Programming Paradigms 661



Symbolic language processing/representation (7)

» Corrections by way of additional arguments:

det --> [the].

det --> [a]. np (X) --> pro(X).

np( ) --> det, n.

n --> [woman].

vp --> v, np(object).
n --> [man].

vp —--> V.

v --> [knows].

s --> np(subject), vp.

pro (subject) --> [he].
pro (subject) --> [she].
pro (object) --> [him].
pro (object) --> [her].

° Now: ?2- s(2,[1).
Z = [he, knows, him] ;
Z = [he, knows, her] ;
Z = [he, knows, the, woman] ;
Z = [he, knows, the, man] ;
Z = [he, knows, a, woman] ; ..

Summer Term 2017 Programming Paradigms 662



Another example: parsing of arithmetic expressions

« Asareminder:;

(Expr) = (Term) ‘+> (Expr) | (Term)
(Term) ::= (Factor) “*’ (Term) | (Factor)
(Factor) ::= (Nat) | ‘CC (Expr) ‘)’

« Realization in Haskell (but not further explained in the lecture):

expr = (ADD <$> term <* char'+' <*> expr) ||| term

term = (MUL <$> factor <* char™*' <*> term) ||| factor

factor (LIT <$> nat) ||| (char'(" *> expr <* char")")

Summer Term 2017 Programming Paradigms 663



Another example: parsing of arithmetic expressions

« Now in Prolog:

e  Tests:

expr (+(T,E)) --> term(T),"+" ,expr(E).
expr (T) --> term(T).

term(* (F,T)) --> factor(F),"*",term(T).
term (F) --> factor (F).

factor (N) --> nat(N).
factor(E) --> "(",expr(E),")".

nat(0) --> "O".

nat(9) --> "9".

?- expr(E,"1+2*3",""), R is E.
E = 1+42*3, R = 7.

?- expr((1+2)*3,S,"").
S = [40, 49, 43, 50, 41, 42, 51] ;

?- expr((1+2)*3,s,""), writef("%s",[S]).
(1+2) *3

Summer Term 2017

Programming Paradigms

665




Another example: parsing of arithmetic expressions

«  Exploiting different call modes:

e  Tests:

parse(S,E) :- expr(E,S,"").
pretty print(E,S) :- expr(E,S,"").
normalize(S,T) :- parse(S,E),pretty print(E,T).

?- parse("1+(2*3)" ,E), R is E.
E = 1+42*3, R = 7.

1+2*3

1+2*3

?- pretty print(1+2*3,S), !, writef("%s",[S]).

?- normalize("1+(2*3)",S), !, writef("%s",[S]).

?- normalize (" (1+2)*3",S), !, writef("%$s",[S]).
(1+2) *3

Summer Term 2017 Programming Paradigms

667




Programming Paradigms

‘ Prolog extension: dynamic predicates I

Summer Term 2017 Programming Paradigms



As a reminder: transitive closure, but now with a cycle

direct (frankfurt,san francisco).
direct (frankfurt,chicago) .
direct(san_francisco,honolulu).
direct (honolulu,maui) .

direct (honolulu,san_ francisco).

connection (X, Y) :- direct(X, Y).
connection (X, Y) :- direct(X, Z), connection(Z, Y).

?- connection(san_ francisco,Y).
= honolulu ;

maui ;

san_francisco ;

honolulu ;

maui ;

san_francisco ;

honolulu ;

= maui ; ..

KKKKKKKK
I

Aim should be: avoid infinite search

Summer Term 2017 Programming Paradigms 672



As a reminder: transitive closure, but now with a cycle

Idea: remember already visited stations, for example as a list:

direct (frankfurt,san francisco).

direct (honolulu,san_francisco).

connection (X, Y) :- connectionl (X, Y, [X]).
connectionl (X, Y, ) :- direct(X, Y).
connectionl (X, Y, L) :- direct(X, Z), not(member(Z,L)),

connectionl(Z, Y, [Z]|L]).

?- connection(san francisco,Y).
Y = honolulu ;

Y = maui ;

Y = san_francisco ;

false.

Cumbersome. And maybe too inefficient: linear search in that stations list.

Summer Term 2017 Programming Paradigms 673



Program facts as data structure

Alternative: save the visited stations as Prolog program facts.

direct (frankfurt,san francisco).

direct (honolulu,san_francisco).

connection(X, Y) :- assert(visited (X)), connection2 (X, Y).
connection2 (X, Y) :- direct(X, Y).
connection2 (X, Y) :- direct(X, 2), not(visited(2)),

assert(visited(Z)), connection2(Z, Y).

?- connection(san francisco,Y).
Y = honolulu ;

Y = maui ;
Y = san_francisco ;
false.

?- connection(san_francisco,Y).
Y = honolulu ;
false. Oops!

Summer Term 2017 Programming Paradigms 674



Program facts as data structure

Cleaning up:

direct (frankfurt,san francisco).
direct (honolulu,san_francisco).

connection (X, Y) :- retractall(visited( )),
assert (visited (X)), connection2 (X, Y).

connection2 (X, Y) :- direct(X, Y).
connection2 (X, Y) :- direct(X, 2), not(visited(2)),
assert (visited(Z)), connection2(Z, Y).

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;
false.

?- connection(san_francisco,Y).

Y = honolulu ;
Y = maui ;
Y = san_francisco ;

false.

Summer Term 2017 Programming Paradigms 675



Program facts as data structure

Example uses of the meta predicates assert and retract:

1 ?- listing.
true.

true.

true.

true.
5 ?- listing.

:- dynamic p/1.
p(1).
p(1).
p(2).
true.

2 ?- assert(p(l)).

3 ?- assert(p(l)).

4 ?- assert(p(2)).

?- p(X).
=1;
1;
= 2.

XXX o
Il

7 ?- retract(p(l)).

true.

?- p(X).
=1;
X = 2.

X o

9 ?- retract(p(X)).

X =1 ;
X = 2.

10 ?- listing.

:- dynamic p/1.
true.

Summer Term 2017

Programming Paradigms

681




Program facts as data structure

« Another useful application of assert is memoization.

« As areminder, in Haskell (unmemoized):

fib0 = 1
fibl = 1
fibn = fib (n— 1) + fib (n — 2)

:

fib(N,M) :- N1 is N-1, fib(N1,Ml1), N2 is N-2, fib(N2,M2), M is M1+M2.

fib(N,1) :- N<2, !.

« The problem:

?- fib(10,X).
X = 89.

?- fib(30,X).
X = 1346269.

?- fib(50,X) . hopeless

Summer Term 2017 Programming Paradigms 682



Program facts as data structure

fib(N,1) :- N<2, !.

fib(N,M) :- N1 is N-1, fib(N1,Ml1), N2 is N-2, fib(N2,M2), M is M1+M2.

:

: - dynamic (memo/2) .

fib(N,1) :- N<2, !'.
fib(N,M) :- memo(N,M), !.
fib(N,M) :- N1 is N-1, fib(N1,Ml), N2 is N-2, fib(N2,M2), M is M1+M2,

assert (memo (N,M)) .

« Now:

?- fib(10,X).
X = 89.

?- fib(30,X).
X = 1346269.

?- £ib(50,X) .
X = 20365011074. instantaneous

Summer Term 2017 Programming Paradigms 683



Program facts as data structure

Side effects on the
“data base” of clauses!

Two variants are common: /

1) “DB” as additional
data structure (facts) -
= (almost) normal in Prolog +

2) self modification of the w

program
(“DB” as program) clauses DB

=> meta programming

Summer Term 2017 Programming Paradigms 684



Programming Paradigms

‘ Prolog extension: collection predicates I

Summer Term 2017 Programming Paradigms



Generating all solutions to a query (1)

« Often several solutions to a query exist:

child (martha, charlotte).
child(charlotte, caroline).
child(caroline, laura).
child(laura, rose).

descend (X, YY) :- child(X, Y).
descend (X, YY) :- child(X, Z), descend(Z, Y).

The query ?- descend (martha,X) . would successively yield the answers
X = charlotte, X = caroline, X = laura and X = rose.

» Prolog offers three different meta predicates for generating all solutions “in one go’:
findall, bagof, setof

in each case delivering them in a result list in a certain way.

Summer Term 2017 Programming Paradigms 686



Generating all solutions to a query (2)

findall (Template, Goal, List).

« For every solution of the query Goal, the instantiated Template is included in the
result list List.

?- findall (X, descend(martha, X), Z2).
Z = [charlotte, caroline, laura, rose].

 Theterm Template can be a complex structure with (or without) variables,
from which the entries of the result list are then built.

?- findall (fromMartha (X), descend(martha, X), Z).
Z = [fromMartha (charlotte), fromMartha (caroline),
fromMartha (laura) , fromMartha (rose)].

Summer Term 2017 Programming Paradigms 687



Generating all solutions to a query (3)

Variants bagof and seto£ behave slightly differently (concerning binding of variables,
and concerning duplicates and sorting).

Possible application of the collection predicates: simulation of list comprehensions.

Haskell: |[e|xexs]'
1 B

Prolog: findall (E, member (X,Xs), List). I

Summer Term 2017 Programming Paradigms 692



Generating all solutions to a query (4)

Examples:

Prolog equivalents for the following Haskell definitions?

1. |[n..m]I

2. [n,m. 1]
3. |[x*x|xe[l..lOO],x‘mod‘Z::O]I

Possible solutions for 1.:

fromTo (N,M, L) - N>M, !, = [].

fromTo (N,M, [N|L]) :- N1 is N+1, fromTo(N1l,M,L).

or

fromTo(N,M,L) :- findall (X,between(N,M,X) , L). I

Summer Term 2017 Programming Paradigms 693



Generating all solutions to a query (5)

Examples:

Prolog equivalents for the following Haskell definitions?

2. [n,m. 1]
3. |[x*x|xe[1..100],x‘mod‘2::0]I

Possible solutions for 2.:

fromThenTo (N,M,L,Xs) = (N> M; N>L), !, Xs = [].
fromThenTo (N,M,L, [N|R]) :- Ml is M+M-N, fromThenTo(M,M1,L,R).
or
fromThenTo(N,M,L,Xs) :- (N> M; N> L), !, Xs = [].
fromThenTo (N,M,L,Xs) :- D is M-N, fromTo (0, (L-N)/D,Is),

findall (X, (member (I,Is), X is N+I*D) ,Xs).

Summer Term 2017 Programming Paradigms 694



Generating all solutions to a query (6)

Examples:

Prolog equivalents for the following Haskell definitions?

3. |[x*x|xe[l..lOO],x‘mod‘Z::O]I

Possible solutions for 3.:
squares (L) :- fromTo(1,100,Xs), filter(Xs,¥s), map(¥s,L).

filter([1,I[1).

filter([X|Xs],[X]|Y¥s]) :- Xmod 2 =:=0, !, filter(Xs,Y¥Ys).
filter([_|Xs], ¥s) :— filter (Xs,¥s).

map ([],[]) .

map ([X|Xs], [Y]|Y¥s]) :- Y is X*X, map(Xs,b¥s).

or

squares (L) :- fromTo(1,100,Xs),

findall (Y, (member(X,Xs), X mod 2 =:= 0, Y is X*X) , L).

Summer Term 2017 Programming Paradigms 696



Programming Paradigms

‘ FP vs. LP (or not so much “vs.”?) I

Summer Term 2017 Programming Paradigms



FP vs. LP: some general correspondences

functional (Haskell)

function

equation

nesting of expressions

reduction

pattern matching

lazy evaluation (leftmost-outermost)
list comprehensions

parser combinators

logic (Prolog)

relation / predicate

clause

conjunction of literals
resolution

unification

sequential processing (left-right)
findall / bagof / setof

definite clause grammars

Summer Term 2017 Programming Paradigms 702




FP vs. LP: some general differences

functional (Haskell) logic (Prolog)
?7?? free variables, call modes
777 solution alternatives
7?? backtracking
?77? negation
types, polymorphism 777
higher-order 777
mathematical purity (to some extent)

Summer Term 2017 Programming Paradigms 703



Functional-logic programming

For example in the language Curry:

coin :: Int double :: Int — Int
coin=0 double x = x + X
coin=1

> coin > double coin

0 0

More? More?

1 2

More? More?

No more Solutions No more Solutions

coin :: Int
coin=07?1

Summer Term 2017 Programming Paradigms 705



Functional-logic programming

For example in the language Curry:

f::a—[a] — [4] g: [a] — [4]
fxys = X:ys gl[] =[]
fx(y:ys)=y:fxys g (x:xs) = fx(gxs)

>f3][1, 2]

[1, 2, 3]

More?

[1, 3, 2]

More?

[3, 1, 2]

More?

No more Solutions

Summer Term 2017 Programming Paradigms 706



Functional-logic programming

For example in the language Curry:

list :: [Int] f::[a] — a
list =ys ++ [1] fxs|ys++[y]==xs =y
where ys free where s, y free

>f [1..4]
4

More?
No more Solutions

f::[a] — a
fC++yl)=y

Summer Term 2017 Programming Paradigms 707




Zebra puzzle functional-logically (1)

data Color = Red | Yellow | Blue | Green | Ivory

data Nationality = Norwegian | Englishman | Spaniard | Ukrainian | Japanese
data Drink = Coffee | Tea | Milk | Juice | Water

data Pet = Dog | Horse | Snails | Fox | Zebra

data Smoke = Winston | Kools | Chesterfield | Lucky | Parliaments

right_of :: a — a — [a] — Success
right of rl(hy:h,:hs) =(==h; &r=:=h,) ? right_ofrl (h, : hs)

next to::a— a— [a] — Success
next to xy =right of xy
next toxy =right_of y x

member :: a — [a] — Success
member X (y :ys) =x ==y ? member X ys

Summer Term 2017 Programming Paradigms 708



Zebra puzzle functional-logically (2)

zebra |

zebra :: ([(Color,Nationality,Drink,Pet,Smoke)], Nationality)

member (Red, Englishman, , , ) houses

& member (_, Spaniard, , Dog, ) houses

& member (Green, , Coffee, , ) houses

& member (_, Ukrainian, Tea, , ) houses

& right_of (Green, , , , ) (lvory, , , , ) houses

& member (_, , , Snails, Winston) houses

& member (Yellow, , , , Kools) houses

& next to(, , , , Chesterfield) (, , , Fox, ) houses
&next to(, , , ,Kools)(, , ,Horse, )houses

& member (_, _, Juice, _, Lucky) houses

& member (_, Japanese, , , Parliaments) houses

& next_to (_, Norwegian, , , ) (Blue, , , , ) houses

& member (_, zebraOwner, , Zebra, ) houses
& member (_, , Water, , ) houses

= (houses, zebraOwner)

where

houses = [(_, Norwegian, , , ), ,(, ,Milk, , ), , ]
zebraOwner =

Summer Term 2017

Programming Paradigms

709




