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Logic programming: summary (1)

• principle of logic programming:

• specification = collection of predicate definitions

• predicate definition = sequence of clauses (facts and rules)

• operationalisation = 

• essentially: step-wise resolution of (positive) literals

• but also: 

• sequential (left-to-right) execution of conjunctions

• backtracking (constrained by Cut-operator, which we haven’t looked at)

• expressions/terms:

• constants, variables

• composite expressions: lists, structures (uninterpreted terms)
• evaluable expressions: only for built-in arithmetic operators in is-literals

• no nested predicate applications

• literals:

• atomic formulas (with parameter list consisting of terms)
• negated literals possible: not, \+ , \=

• literals with built-in predicates possible (e.g. is- or comparison literals) 
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Logic programming: summary (2)

• clauses:

• facts: positive literals

• rules: 

• head: positive literal 

• body: literal or conjunction of literals, possibly negative ones

• recursion

• declarative semantics: motivated by logical model theory

• resolution/derivation trees:

• unification as “two-way”-parameter passing, free variables, call modes

• in special cases: analogous to pattern matching in Haskell

• different clauses for same predicate are all explored

(in top-down order), nondeterminism

• operational impact of order of literals within a clause

• non-logical features:

• negation as failure

• some others (…)
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Prolog extension: DCGs
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Symbolic language processing/representation (1)

• Assume we want to model sentences of the English language.

• We need different categories of words and sentence parts:

verb, noun, verb phrase, …

as well as rules for grammatically correct combination of those:

sentence  noun phrase, verb phrase

noun phrase  determiner, noun

verb phrase  verb, noun phrase

…

• And, of course, a mechanism for “executing” such a grammar.
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Symbolic language processing/representation (2)

Simple realization in Prolog:

• Word categories + rules:

• Usage:

det([the]).

det([a]).

n([woman]).

n([man]).

v([knows]).

np(Z) :- det(X), n(Y), append(X,Y,Z).

vp(Z) :- v(X), np(Y), append(X,Y,Z).

vp(Z) :- v(Z).

s(Z) :- np(X), vp(Y), append(X,Y,Z).

?- s([a,woman,knows,a,man]).

true.

?- s([the,woman,knows]).

true.

?- s(Z).

Z = [the, woman, knows, the, woman] ;

…

Z = [a, man, knows].

Somewhat 

nice, but

potentially 

quite 

inefficient due 

to the way of 

using append!
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det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [knows].
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Symbolic language processing/representation (3)

Special Prolog feature: “Definite Clause Grammars”

Usage (with special role of second argument, instantiated with empty list):

np --> det, n.

vp --> v, np.

vp --> v.

s --> np, vp.

?- s([a,woman,knows,a,man],[]).

true.

?- s([the,woman,knows],[]).

true.

?- s(Z,[]).

Z = [the, woman, knows, the, woman] ;

…

Z = [a, man, knows].
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det(td) --> [the].

det(td) --> [a].

n(tn) --> [woman].

n(tn) --> [man].

v(tv) --> [knows].
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Symbolic language processing/representation (4)

So far we can only test or generate:

In addition, we would like to truly “parse”, that is, with output of sentence structure.

By adding a syntax tree argument:

np(tnp(T,S)) --> det(T), n(S).

vp(tvp(T,S)) --> v(T), np(S).

vp(tvp(T))   --> v(T).

s(ts(T,S)) --> np(T), vp(S).

?- s([a,woman,knows,a,man],[]).

true.

?- s(Z,[]).

Z = [the, woman, knows, the, woman] ;

…

Z = [a, man, knows].
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det(td) --> [the].

det(td) --> [a].

n(tn) --> [woman].

n(tn) --> [man].

v(tv) --> [knows].
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Symbolic language processing/representation (5)

np(tnp(T,S)) --> det(T), n(S).

vp(tvp(T,S)) --> v(T), np(S).

vp(tvp(T))   --> v(T).

s(ts(T,S)) --> np(T), vp(S).

?- s(T,[a,woman,knows,a,man],[]).

T = ts(tnp(td,tn),tvp(tv,tnp(td,tn))).

?- s(T,Z,[]).

T = ts(tnp(td,tn),tvp(tv,tnp(td,tn))),

Z = [the, woman, knows, the, woman] ;

…

T = ts(tnp(td,tn),tvp(tv)),

Z = [a, man, knows].
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det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [knows].

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].
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Symbolic language processing/representation (6)

Another sensible use of additional arguments: grammatical features.

• Assume we want to introduce pronouns:

• Hmm:   

np --> pro.

np --> det, n.

vp --> v, np.

vp --> v.

s --> np, vp.

?- s(Z,[]).

Z = [he, knows, he] ;

Z = [he, knows, she] ; …
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det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [knows].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].
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Symbolic language processing/representation (7)

• Corrections by way of additional arguments:

• Now:   

np(X) --> pro(X).

np(_) --> det, n.

vp --> v, np(object).

vp --> v.

s --> np(subject), vp.

?- s(Z,[]).

Z = [he, knows, him] ;

Z = [he, knows, her] ;

Z = [he, knows, the, woman] ;

Z = [he, knows, the, man] ;

Z = [he, knows, a, woman] ; …
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Another example: parsing of arithmetic expressions

• As a reminder:

• Realization in Haskell (but not further explained in the lecture):

expr    = ( ADD  <$>  term  <*  char '+'  <*>  expr )  | | |  term

term    = ( MUL  <$>  factor  <*  char '*'  <*>  term )  | | |  factor

factor  = ( LIT  <$>  nat )  | | |  ( char '('  *>  expr  <*  char ')' )

⟨Expr⟩ ::=  ⟨Term⟩ ‘+’  ⟨Expr⟩ |  ⟨Term⟩
⟨Term⟩ ::=  ⟨Factor⟩ ‘*’ ⟨Term⟩ |  ⟨Factor⟩
⟨Factor⟩ ::=  ⟨Nat⟩ |  ‘(’ ⟨Expr⟩ ‘)’
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Another example: parsing of arithmetic expressions

• Now in Prolog:

• Tests:

expr(+(T,E)) --> term(T),"+",expr(E).

expr(T)      --> term(T).

term(*(F,T)) --> factor(F),"*",term(T).

term(F)      --> factor(F).

factor(N) --> nat(N).

factor(E) --> "(",expr(E),")".

nat(0) --> "0".

…

nat(9) --> "9".

?- expr(E,"1+2*3",""), R is E.

E = 1+2*3, R = 7.

?- expr((1+2)*3,S,"").

S = [40, 49, 43, 50, 41, 42, 51] ;

?- expr((1+2)*3,S,""), writef("%s",[S]).

(1+2)*3
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Another example: parsing of arithmetic expressions

• Exploiting different call modes:

• Tests:

parse(S,E) :- expr(E,S,"").

pretty_print(E,S) :- expr(E,S,"").

normalize(S,T) :- parse(S,E),pretty_print(E,T).

?- parse("1+(2*3)",E), R is E.

E = 1+2*3, R = 7.

?- pretty_print(1+2*3,S), !, writef("%s",[S]).

1+2*3

?- normalize("1+(2*3)",S), !, writef("%s",[S]).

1+2*3

?- normalize("(1+2)*3",S), !, writef("%s",[S]).

(1+2)*3
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Prolog extension: dynamic predicates
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As a reminder: transitive closure, but now with a cycle

direct(frankfurt,san_francisco).

direct(frankfurt,chicago).

direct(san_francisco,honolulu).

direct(honolulu,maui).

direct(honolulu,san_francisco).

connection(X, Y) :- direct(X, Y).

connection(X, Y) :- direct(X, Z), connection(Z, Y).

Aim should be: avoid infinite search

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

Y = honolulu ;

Y = maui ; …
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As a reminder: transitive closure, but now with a cycle

direct(frankfurt,san_francisco).

…

direct(honolulu,san_francisco).

connection(X, Y) :- connection1(X, Y, [X]).

connection1(X, Y, _) :- direct(X, Y).

connection1(X, Y, L) :- direct(X, Z), not(member(Z,L)),

connection1(Z, Y, [Z|L]).

Idea: remember already visited stations, for example as a list:

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

false.

Cumbersome. And maybe too inefficient: linear search in that stations list.
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Program facts as data structure

direct(frankfurt,san_francisco).

…

direct(honolulu,san_francisco).

connection(X, Y) :- assert(visited(X)), connection2(X, Y).

connection2(X, Y) :- direct(X, Y).

connection2(X, Y) :- direct(X, Z), not(visited(Z)),

assert(visited(Z)), connection2(Z, Y). 

Alternative: save the visited stations as Prolog program facts.

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

false.

?- connection(san_francisco,Y).

Y = honolulu ;

false. Oops!
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Program facts as data structure

direct(frankfurt,san_francisco).

…

direct(honolulu,san_francisco).

connection(X, Y) :- retractall(visited(_)),

assert(visited(X)), connection2(X, Y).

connection2(X, Y) :- direct(X, Y).

connection2(X, Y) :- direct(X, Z), not(visited(Z)),

assert(visited(Z)), connection2(Z, Y). 

Cleaning up:

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

false.

?- connection(san_francisco,Y).

Y = honolulu ;

Y = maui ;

Y = san_francisco ;

false.
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Program facts as data structure

1 ?- listing.

true.

2 ?- assert(p(1)).

true.

3 ?- assert(p(1)).

true.

4 ?- assert(p(2)).

true.

5 ?- listing.

:- dynamic p/1.

p(1).

p(1).

p(2).

true.

6 ?- p(X).

X = 1 ;

X = 1 ;

X = 2.

7 ?- retract(p(1)).

true.

8 ?- p(X).

X = 1 ;

X = 2.

9 ?- retract(p(X)).

X = 1 ;

X = 2.

10 ?- listing.

:- dynamic p/1.

true.

Example uses of the meta predicates assert and retract:
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Program facts as data structure

• Another useful application of  assert is memoization.

• As a reminder, in Haskell (unmemoized):

• The problem:

fib(N,1) :- N<2, !.

fib(N,M) :- N1 is N-1, fib(N1,M1), N2 is N-2, fib(N2,M2), M is M1+M2.

fib 0  =  1

fib 1  =  1

fib n  =  fib (n – 1) + fib (n – 2)

?- fib(10,X).

X = 89.

?- fib(30,X).

X = 1346269.

?- fib(50,X). hopeless
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Program facts as data structure

• Now:

:- dynamic(memo/2).

fib(N,1) :- N<2, !.

fib(N,M) :- memo(N,M), !.

fib(N,M) :- N1 is N-1, fib(N1,M1), N2 is N-2, fib(N2,M2), M is M1+M2,

assert(memo(N,M)).

?- fib(10,X).

X = 89.

?- fib(30,X).

X = 1346269.

?- fib(50,X).

X = 20365011074. instantaneous

fib(N,1) :- N<2, !.

fib(N,M) :- N1 is N-1, fib(N1,M1), N2 is N-2, fib(N2,M2), M is M1+M2.
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Program facts as data structure

clauses DB

assert

retract




Side effects on the

“data base” of clauses!

Two variants are common:

1) “DB” as additional 

data structure (facts)

 (almost) normal in Prolog

2) self modification of the

program 

(“DB” as program) 

 meta programming 
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Prolog extension: collection predicates
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Generating all solutions to a query (1)

• Often several solutions to a query exist:

child(martha, charlotte).

child(charlotte, caroline).

child(caroline, laura).

child(laura, rose).

descend(X, Y) :- child(X, Y).

descend(X, Y) :- child(X, Z), descend(Z, Y).

The query ?- descend(martha,X). would successively yield the answers

X = charlotte,  X = caroline,  X = laura and X = rose.

• Prolog offers three different meta predicates for generating all solutions “in one go”:

findall , bagof , setof

in each case delivering them in a result list in a certain way.
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Generating all solutions to a query (2)

findall(Template, Goal, List). 

• For every solution of the query  Goal, the instantiated  Template is included in the

result list  List.

?- findall(X, descend(martha, X), Z). 

Z = [charlotte, caroline, laura, rose].

• The term  Template can be a complex structure with (or without) variables, 

from which the entries of the result list are then built. 

?- findall(fromMartha(X), descend(martha, X), Z). 

Z = [fromMartha(charlotte), fromMartha(caroline),

fromMartha(laura), fromMartha(rose)].
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Generating all solutions to a query (3)

Variants bagof and setof behave slightly differently (concerning binding of variables, 

and concerning duplicates and sorting).

Possible application of the collection predicates: simulation of list comprehensions.

[ e | x Ã xs ]Haskell:

findall(E, member(X,Xs), List).Prolog:
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Generating all solutions to a query (4)

Examples:

Prolog equivalents for the following Haskell definitions?

1.

2.

3.

Possible solutions for 1.:

[ x * x  |  x Ã [1 .. 100], x `mod` 2 == 0 ]

[ n .. m ]

[ n, m .. l ]

fromTo(N,M,L)     :- N > M, !, L = [].

fromTo(N,M,[N|L]) :- N1 is N+1, fromTo(N1,M,L).

fromTo(N,M,L) :- findall(X,between(N,M,X),L).

or
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[ n, m .. l ]
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Generating all solutions to a query (5)

Examples:

Prolog equivalents for the following Haskell definitions?

2.

3.

Possible solutions for 2.:

[ x * x  |  x Ã [1 .. 100], x `mod` 2 == 0 ]

fromThenTo(N,M,L,Xs)    :- (N >= M; N > L), !, Xs = [].

fromThenTo(N,M,L,[N|R]) :- M1 is M+M-N, fromThenTo(M,M1,L,R).

fromThenTo(N,M,L,Xs) :- (N >= M; N > L), !, Xs = [].

fromThenTo(N,M,L,Xs) :- D is M-N, fromTo(0,(L-N)/D,Is),

findall(X,(member(I,Is), X is N+I*D),Xs).

or
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Generating all solutions to a query (6)

Examples:

Prolog equivalents for the following Haskell definitions?

3.

Possible solutions for 3.:

[ x * x  |  x Ã [1 .. 100], x `mod` 2 == 0 ]

squares(L) :- fromTo(1,100,Xs), filter(Xs,Ys), map(Ys,L).

filter([],[]).

filter([X|Xs],[X|Ys]) :- X mod 2 =:= 0, !, filter(Xs,Ys).

filter([_|Xs],Ys)     :- filter(Xs,Ys).

map([],[]).

map([X|Xs],[Y|Ys]) :- Y is X*X, map(Xs,Ys).

squares(L) :- fromTo(1,100,Xs), 

findall(Y,(member(X,Xs), X mod 2 =:= 0, Y is X*X),L).

or
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FP vs. LP  (or not so much “vs.”?)
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FP vs. LP: some general correspondences

functional (Haskell) logic (Prolog)

function relation / predicate

equation clause

nesting of expressions conjunction of literals

reduction resolution

pattern matching unification

lazy evaluation  (leftmost-outermost) sequential processing (left-right)

list comprehensions findall / bagof / setof

parser combinators definite clause grammars
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FP vs. LP: some general differences

functional (Haskell) logic (Prolog)

??? free variables, call modes

??? solution alternatives

??? backtracking

??? negation

types, polymorphism ???

higher-order ???

mathematical purity (to some extent)
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Functional-logic programming

For example in the language Curry:

coin :: Int

coin = 0

coin = 1

> coin

0

More?

1

More?

No more Solutions

coin :: Int

coin = 0 ? 1

double :: Int ! Int

double x = x + x

> double  coin

0

More?

2

More?

No more Solutions
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Functional-logic programming

For example in the language Curry:

f :: a ! [a] ! [a]

f x ys         =  x : ys

f x (y : ys) =  y : f x ys

> f 3 [1, 2]

[1, 2, 3]

More?

[1, 3, 2]

More?

[3, 1, 2]

More?

No more Solutions

g :: [a] ! [a]

g [ ] =  [ ]

g (x : xs) =  f x (g xs)

> g [1, 2, 3]

[3, 2, 1]

More?

[3, 1, 2]

More?

[2, 3, 1]

More?

…
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Functional-logic programming

For example in the language Curry:

list :: [Int]

list = ys ++ [1]

where  ys free

> list

[1]

More?

[_a, 1]

More?

[_a, _b, 1]

More?

…

f :: [a] ! a

f xs | ys ++ [y] == xs  =  y

where  ys, y free

> f  [1 .. 4]

4

More?

No more Solutions

f :: [a] ! a

f (_ ++ [y]) =  y
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data Color           = Red | Yellow | Blue | Green | Ivory

data Nationality  = Norwegian | Englishman | Spaniard | Ukrainian | Japanese

data Drink           = Coffee | Tea | Milk | Juice | Water

data Pet               = Dog | Horse | Snails | Fox | Zebra

data Smoke         = Winston | Kools | Chesterfield | Lucky | Parliaments

right_of :: a ! a ! [a] ! Success

right_of r l (h1 : h2 : hs)  = (l =:= h1 & r =:= h2)  ?  right_of r l (h2 : hs) 

next_to :: a ! a ! [a] ! Success

next_to x y = right_of  x y

next_to x y = right_of  y x

member :: a ! [a] ! Success

member x (y : ys)  = x =:= y  ?  member x ys

Zebra puzzle functional-logically (1)
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zebra :: ([(Color,Nationality,Drink,Pet,Smoke)], Nationality)

zebra   | member (Red, Englishman, _, _, _) houses

& member (_, Spaniard, _, Dog, _) houses

& member (Green, _, Coffee, _, _) houses

& member (_, Ukrainian, Tea, _, _) houses

& right_of (Green, _, _, _, _) (Ivory, _, _, _, _) houses

& member (_, _, _, Snails, Winston) houses

& member (Yellow, _, _, _, Kools) houses

& next_to (_, _, _, _, Chesterfield) (_, _, _, Fox, _) houses

& next_to (_, _, _, _, Kools) (_, _, _, Horse, _) houses

& member (_, _, Juice, _, Lucky) houses

& member (_, Japanese, _, _, Parliaments) houses

& next_to (_, Norwegian, _, _, _) (Blue, _, _, _, _) houses

& member (_, zebraOwner, _, Zebra, _) houses

& member (_, _, Water, _, _) houses

= (houses, zebraOwner)

where 

houses = [(_, Norwegian, _, _, _), _, (_, _, Milk, _, _), _, _]

zebraOwner = _

Zebra puzzle functional-logically (2)


