UNIVERSITAT

DEUs I SSEBNU RG

Open-Minded

Programming Paradigms

Summer Term 2018

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Organisation

UNIVERSITAT
About us i LR e

 Lecturer:
Prof. Janis Voigtlander, Room LF 233
Area: Formal Methods, Programming Languages

 Teaching Assistant:
Marcel Fourne, Room LF 231B

e Student Assistants:
Daniel Laybourn
Matthias Schaffeld

www.uni-due.de/en 13.06.2018 3

UNIVERSITAT
AbOUt yOU ‘DEUSISSEBNURG

To my knowledge, mainly:
1. Bachelor Students “Angewandte Informatik”

2. Bachelor Students “Computer Engineering (ISE)”

Some (relevant) lectures you have presumably attended:
« Grundlegende Programmiertechniken
 Fortgeschrittene Programmiertechniken (?)

 Logik

o Softwaretechnik (?)

www.uni-due.de/en 13.06.2018 4

UNIVERSITAT
DUISBURG

This lecture N DSy

 Weekly slot:
Wednesday, 12:15 - 13:45,in LB 134
about 13 times this term

 Slides will be made available after each lecture.

e There will be other material as well.

« We use the standard UDE Moodle system.

www.uni-due.de/en 13.06.2018 5

UNIVERSITAT
DUISBURG

The exercises B Ol SeBy

Groups:
e Mon, 16:15 - 17:45, LE 105 (English, Marcel)
e Tue, 10:15 - 11:45, LE 120 (German, Daniel)

e Fri, 08:30 — 10:00, LE 120 (German, Daniel)

Starting in the third lecture week.

www.uni-due.de/en 13.06.2018 6

UNIVERSITAT

‘DUISBURG

ESSEN

Role of the exercises
Open-Minded

 You can earn bonus points for the exam.

 But mainly, doing the exercises is important to be
successful in the course.

e In particular, there will be afocus on programming
concepts and tasks. Such material cannot be learned

by heart. It needs practice!

* Not all tasks each week will be mandatory/contributing
to earning the exam bonus. But you are advised to
work on all tasks, and to go to the exercise sessions.

www.uni-due.de/en 13.06.2018 7

UNIVERSITAT
DUISBURG

About our use of Moodle B OSSRy

Moodle for:
e Lecture slides and material

Exercise sheets

e Announcements

Discussion forum

Submission of (some) exercises

Course key: ...

www.uni-due.de/en 13.06.2018 8

UNIVERSITAT
‘ DUISBURG

ESSEN

Eventually, the exam

 There will be a written exam, tentatively planned for
Tue, 28t August.

 Registration for the exam will be via the exam office.

« The exam will be offered in English and German.

« The exam will be about the course as taught this term!

www.uni-due.de/en 13.06.2018 9

UNIVERSITAT

Differences to previous instances of this course W OIS R

« The course will have a stronger emphasis on
programming than in the past, even more so than last
year.

« Some content of last year, and of the years before that,
will not be covered (formal syntax description,
axiomatic semantics of imperative programs, object-
orientation).

« The intention is to do more programming also in the
lecture.

 But of course, there will still be a lot of continuity.

« As an aside, | have started to produce new slides...

www.uni-due.de/en 13.06.2018 10

UNIVERSITAT

R
[JEUS I SS NU G

Open-Minded

Introduction / Motivation

“To know another language Is to have a second soul.”
Charlemagne, 747/748 — 814

UNIVERSITAT

Many high-level programming languages in existence W "4t e

_ ESSEN

Dpen-Minded

History of Programming Languages

O REILLY

170 197 1980 1985 1990 195 woe 2001 002 01 004
s g T
= —_—
™ s e
o e — == =
=] - -
— —
I — T = = = e
= = = .
- el - o
——— = = = - —= — - =
[= -
= - -
—— d — = &
_—
L A
=
.
- - = -
s e s e i
= .
= < - . = =
: g —
= = L — . re—— g
- — 5 - -
L]
LS
——eee
- =
£ = " o=
———
e
T - —_ = =
- - - - —
= = e —
— =3 i & e
o —

© 2004 O'Reilly Verlag GmbH & Co. KG

www.uni-due.de/en 13.06.2018 12

UNIVERSITAT
DUISBURG

Another perspective W DBy
Open-Minded

1955 —
&Foﬁran_]
(cosoL Algol 60)
1960 1 L Cue D)
(snobol
| : P " & o
(. BAsIC 7 PLL . -
Gmd P Clw D
1870 w = "‘_'-"PmIog;}
- f | ML
18975 D /i (Swema) Q
£ I‘- el\ malie i % =
&\ e an S
=y | €D &/

1980 \ . | CD
e | \ Miranda
(Postseript | - : j !

1985 i N

e | =D
b ' \
1990 @D C D
T o | -
\Visual Basic _ o ﬁ}@
1995 kui'-"P,:«\‘
2000

From “American Scientist”: The Semicolon Wars, © 2006 Brian Hayes

www.uni-due.de/en 13.06.2018 13

And yet another one

www.uni-due.de/en

Smalltalk

JavaScript

Objective-C
dava
C++
sOberon
Ada
#Modula-3
@ Modula-2
wObject Pascal

ALGOL 68

@~

. ALGOL

@ ALGOL 60

C , visual Basie

Fortran
Speedcoding

PLA

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Common Lisp
Forth

Scheme

Haskell

http://preview.tinyurl.com/lanquage-influences

13.06.2018

http://preview.tinyurl.com/language-influences

UNIVERSITAT

Also, popularity contests, ... Rl OISR R ©

Open-Minded

Normalized Comparison

This is a chart showing combined results from all data sets, listed individually below.

€]

Java

PHP
JavaScript
C++
Python
Shell
Ruby |
Objective C|° I |
C# —1

Assembly |

sql f

Perl

ASP

D

Visual Basic
Delphi

Scala
Actionscript
ColdFusion | =
Lua
Ada [T

Pascal

Haskell
Scheme
Cobol
Lisp
Clojure
Erlang
Fortran |
Tl
oCaml|l
Forth
Smalltalk
Synergy
Renoc
Brainfuck
Lasso
OpenEdge ABL
SMX

slal 2l

WebDNA
ActiveVFP

0.20 0.40 0.60 0.80 1.00

www.uni-due.de/en 13.06.2018 15

http://preview.tinyurl.com/popular-languages

UNIVERSITAT

So, why such diversity? W LIS B R G

Can one language do “more” than others?

 Arethere problems that one cannot solve in certain
languages?

o Isthere a“best” language? At least for a certain
purpose or application area?

« What does actually separate different programming
languages from each other?

www.uni-due.de/en 13.06.2018 16

UNIVERSITAT
DUISBURG

So, why such diversity? N SRy

Some relevant distinctions:

« syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)

verbosity vs. succinctness (e.g., COBOL vs. Haskell)

« compiled vs. interpreted (e.g., C vs. Perl)

« domain-specific vs. general purpose (e.g., SQL vs. Java)
 sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
 typed vs. untyped (e.g., Haskell vs. Prolog)

 dynamic vs. static (e.g., Ruby vs. ML)

o declarative vs. imperative (e.g., Prolog vs. C)

 object-oriented vs. ??7?

www.uni-due.de/en 13.06.2018 17

UNIVERSITAT
DUISBURG

And, yet, there are common principles W %'

Approaches to the specification of languages
e ... describing syntax,
e ... describing semantics,

as well as implementation strategies.

Language concepts:
e variables and bindings
e type constructs

e control structures and abstraction features

And, of course, paradigms that span a whole class of languages.

www.uni-due.de/en 13.06.2018

18

UNIVERSITAT

A rough plan of the lecture N LIS R
Open-Minded

« We will focus on two paradigms: functional and logic
programming.

 For each, we pick a specific language: Haskell, Prolog.

« We consider actual programming concepts, and also
aspects related to semantics (evaluation, resolution).

o With Haskell, we explore typing concepts like
Inference, genericity, polymorphism.

« We discuss and compare concepts like variables,
statements vs. expressions, etc., in different
languages.

www.uni-due.de/en 13.06.2018 19

UNIVERSITAT
DUISBURG

Declarative programming N TSy

 Functional and logic programming are often called “declarative” or
“descriptive” programming.

« Theideais that programmers can think more in terms of “What?”
instead of “How?”, in other words, more in terms of specification
than planning a certain computation process.

 Of course, there is still a need for algorithmic thinking etc., as
there is no magic.

« Butitistrue that declarative programming has a more high-level,
sometimes mathematical, feel to it.

o Also, the “What-instead-of-How” aspect will become concrete with
observations like the roles of expressions vs. statements in
different languages/paradigms.

A side benefit in declarative languages is often reduced syntax.

www.uni-due.de/en 13.06.2018 20

UNIVERSITAT
DUISBURG

Other reasons for studying “new” paradigms N IS

 Learning different languages now makes it easier to
pick up new languages later on.

 Concepts from once “exotic” languages make their way
Into “mainstream” ones.

 In some application domains, there is an increased
demand for very disciplined, conceptually expressive,
mathematics-based languages.

 Generally, knowing more paradigms increases capacity
to express ideas.

www.uni-due.de/en 13.06.2018 21

UNIVERSITAT

DEUS | SsgNU RG

Open-Minded

Literature

UNIVERSITAT
DUISBURG

Books on Haskell B Ol SeBy

 Programming in Haskell, 2"9 edition; Graham Hutton

e Haskell — The Craft of Functional Programming, 3"
edition; Simon Thompson

 Thinking Functionally with Haskell; Richard Bird
e Haskell-Intensivkurs: Marco Block, Adrian Neumann

e Einfihrung in die Programmierung mit Haskell; Manuel
Chakravarty, Gabriele Keller

www.uni-due.de/en 13.06.2018 23

UNIVER SITAT
DUISBURG

Books on Prolog N Dl

 Learn Prolog Now!; Patrick Blackburn, Johan Bos,
Kristina Striegnitz

« Programmieren in Prolog; William Clocksin,
Christopher Mellish

 Prolog — Verstehen und Anwenden; Armin Ertl

www.uni-due.de/en 13.06.2018 24

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

A first glimpse of FP with CodeWorld

UNIVERSITAT

A first complete animation program i "SR
Open-Minded

import CodeWorld
main = animationOf scene

scene t = pictures $
[circle 8
, colored green (solidRectangle 4 4)

, rotated (pi/2)

(translated 8 0 (colored red (polygon [(0,0),(1,0.5),(1,0.5D))
1

++
[rotated ((at+t)*pi1/20)
(rectangle (4+a) (4+ta)) | a<- [0, 0.5 .. 917 1

www.uni-due.de/en 13.06.2018

26

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Expressions vs. statements

u
DUISBURG

Expression-based programming E5'seP

 Proposition:
Functional programming is about expressions,
whereas imperative programming is about statements.

« Some kinds of expressions you (probably) know:
2+3-(x+1)>
pA-(qVT)
SUMIF(A1:A8,"<0")

 Generally: terms in any algebra, built from constants
and functions/operators, possibly containing variables

www.uni-due.de/en 13.06.2018 28

UNIVERSITAT

‘ nEusl SSEBNU RG

Properties of (pure) expressions

Expressions

e ... arecompositional, built completely from
subexpressions,

o ... often have a meaningful type,

... have avalue, which does not depend on “hidden
Influences”, and does not change on re-evaluation or
based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions
are built from subexpressions), but extends to typing and
semantics/evaluation.

www.uni-due.de/en 13.06.2018 29

UNIVERSITAT
' DUISBURG

ESSEN

Properties of (pure) expressions

Example 2 + 3 - (x + 1)%:
The constants are 1, 2, 3 of type Z.
The operatorsare +:Z X Z—>Z,-:Z X Z—>Z, O0*:Z > 1.

The value of 2 + 3 - (x + 1)? depends only on the value of
2 and the value of 3 - (x + 1)?, the latter only depends on
the value of 3 and the value of (x + 1)?, ...

www.uni-due.de/en 13.06.2018 30

UNIVER SITAT

‘ Dy SSEBNU RG

Properties of (pure) expressions

« Thanks to these properties, we can easily use notation
known from mathematics, for example reformulating
“2+3-(x+1)? as follows:
“2+3-y*wherey=x+1".

 Also, we can apply simplifications, for example
replacing exponentiation by multiplication:
“24+3-y-ywherey=x+1".

 And while this example was about arithmetic
expressions, the concepts apply much more generally.

 But only if we have pure expressions!

www.uni-due.de/en 13.06.2018 31

UNIVERSITAT
DUISBURG

The situation in imperative programming languages N "'

« So what is different in imperative programming?

« Don’t we also have expressions there?
For example in:
b = 100000;
iT (z >0) {
z = 100 + z;
J = 0;
whille (b < 200000) {
b=Db*z/ 100;
J=3+1;%
} else J = -1;
 Yes, there are expressions, but they are not the dominating
syntactical construct. Statements are!

www.uni-due.de/en 13.06.2018 32

UNIVERSITAT

The situation in imperative programming languages W S R 6

« Why is this difference relevant? What properties do statements, as
opposed to expressions, not have?

 Well, for example, they are not even syntactically compositional:
Not every well-formed smaller part of a statement is itself a

Statement.

while (b < 200000) {
=b * z / 100;
=1+ 13

hIU

}

* Instead, expressions occur, also keywords, ...
« Moreover, statements do not always have a meaningful type.

« Or even just avalue. (Try giving a value for the above block.)

www.uni-due.de/en 13.06.2018 33

UNIVERSITAT

The situation in imperative programming languages i IS R
Open-Minded

« As aconseqguence, we cannot name arbitrary well-formed smaller

parts (as opposed to what we saw for expressions and their
subexpressions).

 For example, we cannot simply write:

body = {
b=Db *z / 100;
J =13 +1;

by

while (b < 200000) body;

 Even workarounds involving functions/procedures/methods are
not as flexible and useful as the kind of mathematical notation for
expressions: “2+3-y*wherey=x+1".

www.uni-due.de/en 13.06.2018

34

UNIVERSITAT
DUISBURG

The situation in imperative programming languages W DS
Open-Minded

 Okay, so what about the sublanguage of expressions in an
Imperative language? Can they, at least, be treated as we saw
before?

 Not in general! For example, we saw that mathematically we
should be able to rewrite something like “exp, + exp, - (exp3)?” as
any of:

exp, + exp, - var> where var = exps

exp, + exp, - var - var where var = exps

exp; + exp, - exps - exps

e But code snippets like “result = exp; + exp, * (expg)"2;"
do not take well to being replaced by:

var = expy; result = exp; + exp, * var™’;

... Or by code snippets corresponding to the other expression
alternatives above.

www.uni-due.de/en 13.06.2018 35

UNIVERSITAT
DUISBURG

The situation in imperative programming languages W DS
Open-Minded

Indeed, consider these four code snippets:

result = exp; + exp, * (exp3)™2;

var = exps; result = exp,; + exp, * var™"?;
var = exps; result = exp,; + exp, * var * var;
result = exp; + exp, * exp; * exps;;

And imagine instantiations with exp; being the “expression” 1++
or some invocation ¥() for a procedure/method T.

The problem is that expressions in an imperative language are
typically not pure expressions. Instead, they have side-effects!

(For same reason, re-evaluation of an expression can change the
value. And order of evaluating subexpressions becomes relevant.)

www.uni-due.de/en 13.06.2018

36

UNIVERSITAT
So what? i LR e

e So, how “bad” is all that?

Do these artificial examples “prove” anything?

 Well, | haven’t (yet?) argued that the pure expression-
based style is better in some sense.

e But what should have become clear is that it is
different!

 In any case, let us “do” something with CodeWorld.

www.uni-due.de/en 13.06.2018 37

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Another look at FP with CodeWorld

UNIVERSITAT
DUISBURG

Describing a picture via an expression N eIy
Open-Minded

A rather simple example:
main z: 10 O

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture
triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective ...

www.uni-due.de/en 13.06.2018 39

UNIVERSITAT
DUISBURG

Describing a picture via an expression E'S'Se
Open-Minded

Observations:
« Compositionality on level of syntax, types, and values.
* Pictures are expressions/values here, can be named etc.

 Functions/operators used.:

circle : R - Picture

polygon - [RxR] - Picture

colored : Color x Picture - Picture

translated : R x R x Picture - Picture

& - Picture x Picture — Picture
 Properties like: translated a b (colored c d)

= colored c (translated a b d)

www.uni-due.de/en 13.06.2018 40

UNIVERSITAT

Describing an animation via a function TS R
Open-Minded

A slight variation:
main z: 10 O

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

« Dependence on time expressed via parameter t.
« That parameter is never set by us for the animation.
 No for-loop or other explicit control.

 |nstead, the animationOf construct takes care “somehow”
(this involves evaluating scene for different t).

www.uni-due.de/en 13.06.2018

41

UNIVERSITAT

‘ Dy SSEBNU RG

Another example

Open-Minded

« Mathematically describing dynamic behaviour as a function of
time should not be much of a surprise.

A well-known physics example: /1,_‘
x(t) = vg, - t N
(t) =vgy -t —2-t? 2 R
Y= Voy 2 / AN
/

e As aprogram:
scene :: Double -> Picture
scene t = cliff & translated x y (circle 0.1)
where x = 3 * t
y =6 *t -9.81/7 2 * th2
clhiff = polyline [(-5,0),(0,0),(0,-2)]

www.uni-due.de/en 13.06.2018 42

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Rich expressions

UNIVERSITAT
‘ DUISBURG

ESSEN

A desire for additional expressivity

* In the examples, we have already expressed
continuous distribution, throughout time, via functions.

« What if we also, or alternatively, want a discrete
distribution, throughout “space”?

e S0, instead of one triangle moving in time, we want
several static triangles at different places.

« But we do not really want to replicate these “by hand”.
« Maybe now is the time for a for-loop?
« No, we don’t have that.

e But what do we have instead?

www.uni-due.de/en 13.06.2018 44

UNIVERSITAT

List comprehensions W O YIS R
Open-Minded

Using a list comprehension:
main z: 10 O
main = drawingOf (pictures [scene d | d <- [O0..5] D

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

e With pictures :: [Picture] -> Picture.
e And alistcomprehension [scene d | d <- [0..5]].

 This is not like a For-loop, for several reasons.

e Instead, it is like a mathematical set comprehension {2-n|n €N }.

www.uni-due.de/en 13.06.2018 45

UNIVERSITAT
‘ DUISBURG

ESSEN

Brief recap from last week

 EXpressions: syntactic structures one could imagine
after the “=" in an assignment “var = ..” in C or Java.

 Values: results of evaluating expressions, obtained by
combining values of subexpressions.

e Statements: syntactic structures that are characterized
not so much by what (if anything at all) they evaluate
to, but rather by what effect they have (change of
storage cells, looping, etc.).

* In a pure, non-statement setting, any two expressions
that have the same value can be replaced for each
other, without changing the behaviour of the program.

www.uni-due.de/en 13.06.2018 46

UNIVER SITAT
DUISBURG

Brief recap from last week N OSSRy

Some takeaways from examples you have seen:

« Non-constant behaviour expressed as functions, in the
mathematical sense. f(x) = -

« Such adescription defines the behaviour “as a whole”, not
In a “piecemeal” fashion.

 For example, there is no “first run this piece of animation,
then that piece, and then something else”.

o Actually, there is not even a concept of “this piece of
animation stops at some point”.

Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential
statements, with imperative keywords or semicolons etc.
Instead, ...

www.uni-due.de/en 13.06.2018 47

u
DUISBURG

Case distinctions U 15eBy

« Switching by conditional expressions:

scene :: Double -> Picture
scene t = 1F t < 3
then translated t t (circle 1)
else blank

e This is very much in line with case distinctions in
mathematical functions:

—X, ifx<0
X, else

f(x)={

www.uni-due.de/en 13.06.2018 48

UNIVERSITAT

A return to list comprehensions Wik e

Open-Minded

We had.:
main z: 10 O
main = drawingOf (pictures [scene d | d <- [0..5] D

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

 Also thisis a“wholemeal” approach, since we express the
application of scene to the elements of [0..5] “in one go”.

« Specifically, we do not conceptually consider “one after another”:

the resulting values are completely independent, no individual
instance influences any other.

o Just like in the mathematical notation { f(n) | n € N }.

www.uni-due.de/en 13.06.2018 49

UNIVERSITAT

A return to list comprehensions Wik e

Open-Minded

We had.:
main z: 10 O
main = drawingOf (pictures [scene d | d <- [0..5] D

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

Of course, the individual evaluations will, on a sequential machine,
happen in some order. And the resulting list is really a sequence,
not a set. But the individual values will be independent of all that.

 Indeed, one can show that for any ¥ and n, in Haskell:
[Fi] 1 <-]J0..n]1]

reverse [T 1 | 1 <- reverse [0..n]]

www.uni-due.de/en 13.06.2018 50

UNIVER SITAT
DUISBURG

Contrast to for-loops W %Sy

e In contrast, it is not remotely true that in an imperative
language we can always replace a piece of code written like
this:

for (1 = 0; 1 <= nj; 1++)
resultfi] = f(1);
by this:
for (i = n; 1 >= 0; 1--)
resultfi] = f(1);

 And even for the cases where statements as above are
equivalent, a formulation given that way is less useful than
the Haskell equation we saw, or indeed its more general

version:
[T X | X <- reverse list]

= reverse [T x | x <- list]

www.uni-due.de/en 13.06.2018 51

UNIVERSITAT
‘ DUISBURG

ESSEN

Another example

Another example, both for list comprehensions and for
the pragmatic value of expression-based programming:

 Imagine we have a way to depict a star, e.g.:

star :: Picture
star = polygon [...]

* ... but want to depict a galaxy.

e Let us work on this in CodeWorld, but also try to think
about how to do something analogous in Java or so.

www.uni-due.de/en 13.06.2018 52

UNIVERSITAT

' Dy SSEBNU RG

More mundane examples of list comprehensions

Open-Minded

> [1,3..10]
[1,3,5,7,9]

> [x2 | x <- [1..10], even x]}
[4,16,36,64,100]

>[y | x <- [1..10], lety = x*2, y “mod™~ 4 == 0]
[4.16,36,64,100]

>[x*y | x<-11,2,3], y <- [1,2,3]]
[1.2,3,2,4,6,3,6,9]

www.uni-due.de/en 13.06.2018 53

More mundane examples of list comprehensions W LIS R

> [&Ly) | x <-1[1,2,3], y <- [4,3]]
[(1.4).(1.5).(2,4).(2,5).(3,4).(3,5)]

> [&y) |y <- [4,5], x <= [1,2,3]]
[(1.4).(2.4).(3.4).(1,5).(2,5),(3,5)]

> [&y) | x <-1[1,2,3], y <- [1.-x] 1]
[(1.1).(2.1),(2.2),(3,1).(3,2).(3,3)]

> [x ++y | Xy) <= [("a”,"b"),('c”,"d)] 1
[ab™,""cd™]

www.uni-due.de/en 13.06.2018 54

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Remarks on syntax and types

UNIVERSITAT
DUISBURG

“Oddities” of syntax at the type level W Sy
Open-Minded

Instead of:
circle - R - Picture
polygon : [RxR] - Picture
colored - Color x Picture - Picture
translated : R x R x Picture - Picture
& - Picture x Picture — Picture

type signatures actually look like this:

circle -2 Double -> Picture

polygon - [(Double, Double)] -> Picture
colored 2 Color -> Picture -> Picture

translated :: Double -> Double -> Picture -> Picture

(&) - Picture -> Picture -> Picture

www.uni-due.de/en 13.06.2018

56

UNIVERSITAT

‘ Dy SSEBNU RG

“Oddities” of syntax at the expression/function level

* Instead of F(xX) and g(X,y,z),wewrite ¥F x and g X y z.

« As an example for nested function application, instead of
g(x,f(y),z),wewrite g x (Fy) z

« The same syntax is used at function definition sites, so something
like

float f(int a, char b)
{--- 12

iIn C or Java would correspond to

f -: Int -=> Char -> Float
fab=__.

in Haskell.

www.uni-due.de/en 13.06.2018 57

UNIVERSITAT
DUISBURG

Other observations o OBy
Open-Minded

e |n C/Java we have two forms of 1 ¥ on statements:

* |In an expression language, the form without else does not make
sense, so in Haskell we always have:

iIf ... then ... else ...

 This corresponds to C/Java’s conditional operator:

www.uni-due.de/en 13.06.2018 58

UNIVERSITAT

‘DUISBURG

ESSEN

Some concrete hints

Open-Minded

 Pragmatically, an 1f-then-else expression “without an else”
would be realized by having some “neutral value” in the else-

branch. Remember:

scene :: Double -> Picture
scene t = 1T t < 3
then translated t t (circle 1)
else blank

 Similarly, in alist context: 1¥ condition then list else []

 Also, do not hesitate to use 1f-then-else as subexpressions

freely:
T xy (if exp; then exp, else exp;)

= 1T exp, then T X y exp, else T X y exp;

www.uni-due.de/en 13.06.2018 59

UNIVER SITAT

‘ Dy SSEBNU RG

Layout-sensitivity

In Haskell, this:

lety =a*hb
Fx=W+y)/y
in fc+ fd

IS equivalent to:

let {y=a*b, fx=KX+y)/y}
in fc+ fd

But these are not accepted:
=—a*hb lety=a*hb
fx=Kx+y)/y T X

in fc+ fd in F c

let y

www.uni-due.de/en 13.06.2018 60

UNIVERSITAT
DUISBURG

Other syntax hints o OBy

 Haskell beginners tend to use unnecessarily many
brackets. For example, no need to write ¥ (g (x)) or

(fF xX) + (gy)sincef (gx)andf x + gy
suffice.

 Further brackets can sometimes be saved by using the
$ operator, for example writing ¥ $ g x $ h yinstead

of ¥ (g x (h y)).

« The tool hliInt gives warnings about redundant
brackets, as well as about overuse of $.

www.uni-due.de/en 13.06.2018 61

Specifics about number types

Open-Minded

« Haskell has various number types: Int, Integer,
Float, Double, Rational, ...

« Number literals can have a different concrete type
depending on context,e.qg.,3 -: Int,3 :: Float,
3.5 -: Float,3.5 :-: Double

 For general expressions there are overloaded
conversion functions, for example fromlntegral with,
among others, any of the types Int -> Integer,
Integer -> Int, Int -> Rational, ..., and
truncate, round, ceirling, floor, each with any of
the types Float -> Int, Double -> Integer, ...

www.uni-due.de/en 13.06.2018 62

UNIVER SITAT

.. and arithmetic operators N IS R

 Operators are also overloaded, and often no
conversion is necessary, for examplein 3 + 4.5 or

also in:

f X 2 * X + 3.5
gy =Ft4 /vy

* In other cases, conversion is necessary, for example in
this:
T -: Int -> Float
f x =2 * fromlntegral x + 3.5

*..
X
I

2 * X + 3.5
T (fromlIntegral (length "abcd™)) /7 vy

«Q
<
[

www.uni-due.de/en 13.06.2018 63

UNIVERSITAT
' DUISBURG

.. and arithmetic operators

ESSEN

« Some operators are available only at certain types, e.q.,
no division symbol “/” on integer types.

e |nstead, the functiondiv -: Int -> Int -> Int
(also on Integer).

e Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 “div" 3instead
of div 17 3.

 Useful mathematical constants and functions exist,
e.g., pi, sin, sgrt, min, max, ...

www.uni-due.de/en 13.06.2018 64

Types beside number types W Dy R

Other pre-existing types:

 Type Bool, with values True and False and operators
&&, ||, and not.

« Type Char, with values "a*", "b", ..., "\n" etc., and
functions succ, pred, as well as comparison operators.

e Listtypes: [Int], [Bool], [[Int]], ..., with various
pre-defined functions and operators.

 Character sequences: type String = [Char], with
special notation ""abc" instead of ["a","b","c"].

o Tupletypes: (Int, Int), (Int,String,Bool),
((Int,Int),Bool,[INnt]), also [(Bool,Int)] etc.

www.uni-due.de/en 13.06.2018 65

UNIVER SITAT

Some observations based on exercise submissions OISR R

 You should really not be “afraid” to use 1f-then-else
as subexpressions (e.g., as arguments to functions).

e Thereis no reason to write something like
iITf b == True then ... else ...

since
1T b then ... else ...

means the same thing.

o Also, this:
check x y = 1f X <y then True else False

IS a rather complicated way of just saying this:
check Xy = X <y

www.uni-due.de/en 13.06.2018 66

UNIVERSITAT

' Dy SSEBNU RG

Some observations based on exercise submissions

Open-Minded

e Itis always a good ideato write down type signatures
for top-level functions. Among other benefits, it saves

you from having to deal with (errors involving) types
like: fun :-: (Floating a, Ord a) => a -> a

* In case of doubt concerning number conversions, it
usually does not hurt to add some fromlntegral-

calls, which in the worst case will be no-ops (since,
among others, fromlntegral :-: Int -> Int).

www.uni-due.de/en 13.06.2018 67

UNIVERSITAT

‘DUISBURG

ESSEN

Some observations based on exercise submissions

Open-Minded

If you have repeated occurrences of a common subexpression,
share them! For example, instead of this:

scene t =
iIfT8 *sint >0
then translate (8 * cos t) (8 * sin t) ...
else ...

rather write this:

scene t =
let X =8 *cos t
y =8 *sint
in IfTy > 0 then translate xy ... else ...

www.uni-due.de/en 13.06.2018 68

UNIVERSITAT

‘ Dy SSEBNU RG

Some observations based on exercise submissions

Open-Minded

If the hlint tool mentions “eta reduction”, here is was it
means:

* Instead of something like:
ball :: Double -> Picture

ball t = solidCircle t

one might just as well write:
ball :: Double -> Picture

ball = solidCircle

e Also consider:
opening :: Double -> Picture
opening = rectangle 10

www.uni-due.de/en 13.06.2018

69

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Programming by case distinction

Expressing conditional behaviour

« We have already discussed 1f-then-else repeatedly, both
In lecture and exercises.

 Other ways you may have seen or already used are list
comprehensions without generators:
pictures [moon | hour > 22 || hour < 5]
= 1f hour > 22 || hour < 5
then moon
else blank

e ... and indirect conditionality via mathematical functions:
rotated (min t pi1) ...
1T t < pi

then rotated t ...

else rotated pi1 ...

www.uni-due.de/en 13.06.2018 71

UNIVER SITAT

‘ Dy SSEBNU RG

Expressing conditional behaviour

e ... and function definition using guards:

scene t
| € <= pi = ...

| pt <t é&& t <=2 * p1 = ...
| 2 * p1 < t = ...

 This is again similar to mathematical notation:

(0, ifx<0
f(x) =<x, if0<x<1
1, ifx>1

www.uni-due.de/en 13.06.2018 72

Function definition using guards

 Let us discuss some details based on this example:

factorial :: Integer -> Integer
factorial n

In:: = 1

| n >0 = n* factorial (n - 1)

 First of all, what about the order of clauses?
 Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer
factorial n
| n >0 n * factorial (n - 1)

| n == 1

www.uni-due.de/en 13.06.2018 73

Function definition using guards

« What if the guard conditions overlap?
 Then this is okay:

factorial :-: Integer -> Integer
factorial n
n == = 1
| n>=0 =n * factorial (n - 1)

but this is problematic:

factorial :-: Integer -> Integer
factorial n)
| n>=0 n * factorial (n - 1)

| n=20 1

 Always the first matching clause is used!

www.uni-due.de/en 13.06.2018

74

UNIVERSITAT
DUISBURG

Function definition using guards N eIy
Open-Minded

e Even with the “correct” order:

factorial :: Integer -> Integer
factorial n

| n=0=1

| n>=0 =n * factorial (n - 1)

we can have problems with some inputs.

* If no clause matches, we get a runtime error!

www.uni-due.de/en 13.06.2018 75

UNIVERSITAT

‘ Dy SSEBNU RG

Function definition using guards

Open-Minded

* In fact, if called with appropriate settings, the compiler
warns us of this possible runtime error ahead of time.

« We can avoid both the warning and the actual non-
exhaustiveness error at runtime by having a “catch-all”

clause:
factorial :: Integer -> Integer
factorial n
I n == = 1

| otherwise = n * factorial (n - 1)

www.uni-due.de/en 13.06.2018 76

UNIVERSITAT
DUISBURG

Function definition using guards N eIy
Open-Minded

* In this specific case, negative inputs would still be a
problem.

 Which we could remedy as follows:

factorial :: Integer -> Integer
factorial n
| n <=0 =1

| otherwise = n * factorial (n - 1)

« Some lessons: order matters (and can be exploited),
exhaustiveness matters. Also, some further aspects...

www.uni-due.de/en 13.06.2018 77

UNIVER SITAT

Function definition using guards i IS R

« The compiler’s checks ahead of time are nice, but
necessarily not perfect.

« For example, it cannot in general detect infinite recursion
ahead of time. (The Halting Problem!)

« Even the “simpler” static exhaustiveness checks are not as
powerful as one might sometimes hope.

 For example, one might hope that something like this:

T Xy
I)(::y:___
| X /=y = __.

IS statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.

www.uni-due.de/en 13.06.2018 78

Function definition using guards LAY R

 Also, the more desirable “fix” to the issue of possible
negative inputs for

factorial :: Integer -> Integer
factorial n
In:: = 1

| otherwise n * factorial (n - 1)

(instead of switching to n <= 0in the first clause)

would be to statically prevent negative inputs from
occurring at all, via the type system.

« But that is atopic for a later lecture.

www.uni-due.de/en 13.06.2018 79

UNIVER SITAT

Function definition using guards LAY R

 For now, let us apply our insights to this situation
considered earlier:

scene t

| t <= pi

| pi < t && t <= 2 * pi
| 2 *pi <t

« Hereis how this should probably look instead:

scene t
| €t <= pi
| €t <= 2 * pi
| otherwise I

www.uni-due.de/en 13.06.2018 80

UNIVERSITAT

Function definition using guards R
Open-Minded

Some further syntactic variations:

factorial :: Integer -> Integer

factorial n | n == =1

factorial n | otherwise = n * factorial (n - 1)
factorial :: Integer -> Integer

1
n * factorial (n - 1)

factorial n | n ==
factorial n

factorial :: Integer -> Integer
factorial 0 = 1
factorial n = n * factorial (n - 1)

www.uni-due.de/en 13.06.2018 81

UNIVERSITAT
DUISBURG

Function definition using guards e SeB
Open-Minded

Another example:

ackermann :: Integer -> Integer -> Integer
ackermann On | n>=0=n+ 1
ackermann m O | m > 0 = ackermann (m - 1) 1
ackermann mn | m>0 & n >0

= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness
warnings.

www.uni-due.de/en 13.06.2018 82

UNIVERSITAT
DUISBURG

Function definitions generally N DSy

General rules for function definitions:
« One or more equations, with or without guards.

« One or more arguments; so far, only variable names
(can be anonymous) or constants.

 Uniqueness of variable names within one equation.

 Never expressions, in argument position at definition
sites, that would require computation or “solving”.

www.uni-due.de/en 13.06.2018 83

Function definitions generally

A few more examples:

not :: Bool -> Bool
not True = False
not = True

(&&) :: Bool -> Bool -> Bool

True
False

True && True
&&

(&&) :: Bool -> Bool -> Bool

b & True = Db
_&& = False

www.uni-due.de/en 13.06.2018

84

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Working with lists

UNIVERSITAT
‘ DUISBURG

ESSEN

A few words about lists up front

 We will consider a lot of examples in the lecture and
exercises that deal with lists.

 But that is mostly for didactical reasons. In the “real
world”, there are often more appropriate data
structures (and we will eventually see how to define
them ourselves).

 In part due to historical precedent (Lisp), Haskell has a
very rich library of list processing functions.

e It also has specific syntactical support for lists (e.g.,
list comprehensions).

 As already mentioned, Haskell lists are homogeneous.

www.uni-due.de/en 13.06.2018 86

UNIVERSITAT
DUISBURG

Examples of existing (first-order) functions on lists N IS
Open-Minded

take 3 [1..10]
drop 3 [1..10]}
null []

null "abcde”
length "abcde™
head "abcde"
last "abcde™
tail ""abcde”
init "abcde™

splitAt 3 ""abcde™

"abcde™ 11 3
reverse "‘abcde’
"abc'" ++ "'def"

zip "abc' “'def”

concat [[1,2].[1.[31]

[1.2,3]
[4,5,6,7,8,9,10]
True

False

5

a

e
""bcde™

"abcd"

(‘'abc™,"de')

"

"edcba"

"abcdef™
[CCa","d"),("b","e"),("c”,"T7)]
[1.2,3]

www.uni-due.de/en

13.06.2018

87

Our first own function on lists

Open-Minded

Essentially Quicksort:

sort :: [Integer] -> [Integer]

sort [1 = [1

sort list =
let
pivot = head list
smaller = [x | x <- tail list, x < pivot]
greater = [X | x <- tail list, x >= pivot]
in sort smaller ++ [pivot] ++ sort greater

www.uni-due.de/en 13.06.2018 88

UNIVERSITAT
DUISBURG

Infinite lists B Ol 'SeBy

* In Haskell there are even expressions and values for
Infinite lists, for example:
[1,3..] = [1,3,5,7,9,.-..]
[™2 | n<-]1..11] =11,4,9,16,...]

 And while we of course cannot print complete such
lists, we can still work normally with them, as long as
the ultimate output is finite:
take 3 [N2 | n<-[1..] 1 == [1,4,9]

zip [0..] "ab" == [(0,"a"),(1,"b")]

www.uni-due.de/en 13.06.2018 89

UNIVERSITAT
‘ DUISBURG

ESSEN

Infinite lists

But there is no mathematical magic at work, so for
example this:

I m] m<-[n*2 | n<-1]J1..] 1, m < 100]

will “hang” after producing a finite prefix.

Why is that, actually?

Discussion: referential transparency!

www.uni-due.de/en 13.06.2018 90

UNIVERSITAT
DUISBURG

Wholemeal programming on lists N Ce IS

 “Functional languages excel at wholemeal
programming, a term coined by Geraint Jones.
Wholemeal programming means to think big: work with
an entire list, rather than a sequence of elements; ...”
Ralf Hinze

 “Wholemeal programming is good for you: it helps to
prevent a disease called indexitis, and encourages
lawful program construction.”
Richard Bird

www.uni-due.de/en 13.06.2018 91

Wholemeal programming on lists i S R

« An example: Let us assume we want to multiply each
element of an array or list by its position in that data
structure, and sum up over all the resulting values.

o It seems fair to say that this is a typical solution in C:

int array[n];
int result = 0O;

for (int 1 = O;

1 < n; 1+t)
result result + 1

* array|[i];

 And that is about okay, but it does suffer from indexitis.

www.uni-due.de/en 13.06.2018 92

UNIVER SITAT
DUISBURG

Wholemeal programming on lists N IS

« The same example, in a wholemeal fashion, in Haskell:

sum [i * v | (i, V) <- zip [0..] list]

 Nice, short, declarative.

 Of course, one could consider this cheating, because it
IS using a conveniently predefined function sum.

e But actually, that is beside the point. Even without that
convenience function, it would not have taken more
than a dozen keystrokes to express the summation.

 And using a convenient array sum function would not
exactly have made the C version any nicer than it is.

www.uni-due.de/en 13.06.2018 93

UNIVERSITAT
‘ DUISBURG

ESSEN

Wholemeal programming on lists

 So let us discuss the actual issues, expressivity and
susceptibility to change and refactoring.

« Say, what if we decided that the counting of positions
should start at 1 instead of 07

 Inthe C version, that could mean we would switch from
this:
for (int i = 0; i < n; i++)
result = result + 1 * array|[1i];
to:
for (int i = 1; i <= n; i++)
result = result + 1 * array|[i1-1];

e |ndexitis!

www.uni-due.de/en 13.06.2018 94

Wholemeal programming on lists i S R

* In the Haskell version, we simply switch from:
sum [1 * v | (1, v) <- zip [0..] list]

to:
sum [i * v | (i, V) <- zip [1..] list]

 To be fair again, in C we could have made a different
edit:
for (int 1 = 0; 1 < nj; 1++)
result = result + (1+1) * array|[1i];

 But actually, that is just indexitis in a different form.

www.uni-due.de/en 13.06.2018

95

Wholemeal programming on lists

UNIVERSITAT
‘ DUISBURG

ESSEN

The fundamental issue in the C version is a lack of
conceptual separation of values to enumerate/process
on the one hand, and loop control on the other hand.

 Whereas the Haskell version has that separation in the

zip [k..] ... expression.

Basically, the Haskell version needs no explicit loop
control, it does not access data structure elements by
Index (remember what | said about avoiding use of the
11 operator whenever possible), and it does not need
to increment a loop counter or talk about the “loop
end” condition (because: infinite lists).

www.uni-due.de/en 13.06.2018

96

UNIVERSITAT

Wholemeal programming on lists i S R
Open-Minded

 Okay, but are we fooling ourselves, efficiency-wise?
o Certainly, code like

for (int 1 = O]

1 < n; 1++)
result = result + 1

* array[i];
IS more efficient than
sum [1 *v | (1, v) <- zip [0..] List]

because it does not need to use extra memory, and
does not need several data structure traversals?

www.uni-due.de/en 13.06.2018

97

UNIVERSITAT
‘ DUISBURG

Wholemeal programming on lists

ESSEN

 Well, no. Actually, a compiler can translate the
declarative code into a tight C-like loop, not using an
Intermediate data structure, just fine.

« A compiler can even spot parallelization opportunities,
thanks to the “independent values” aspect we already
discussed when comparing list comprehensions
against for-loops in an earlier lecture.

e That all has to do also with the “lawful program
construction” aspect from the Richard Bird quote.

« We could also talk more about refactoring...

 Butis what we saw for the somewhat artificial example
now representative of real situations? Claim: Yes!

www.uni-due.de/en 13.06.2018 98

UNIVERSITAT
‘ DUISBURG

ESSEN

Wholemeal programming on lists

e Letus do alive exercise in wholemeal programming.
(Warning: not a “real situation” either, just as most
exercises in this course.)

e Say we want to write a function that takes a list and
removes adjacent duplicates:

compress [1,3,3,3,2,4,4,2] == [1,3,2,4,2]

« And we want to do this without accessing list elements
by index, without cutting the list into pieces and
working on parts, etc. (no “piecemeal programming”).

 Also, we want to be good software engineers, so ...

www.uni-due.de/en 13.06.2018 99

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Polymorphic types

UNIVERSITAT
DUISBURG

Polymorphic functions on lists N O

« Remember that each Haskell list is homogeneous, i.e.,
cannot contain elements of different types.
"abc' -- [Char]
[1,2,3] :-: [Integer]
["a",2] —-- 11l-typed

At the same time, functions and operators on lists can
be used quite flexibly:

reverse "‘abc” == "'cba"
reverse [1,2,3] == [3,2,1]
"abc" ++ "'def” == "abcdef"
[1,2] ++ [3,4] == [1,2,3,4]

« We have already depended on this flexibility a lot!

www.uni-due.de/en 13.06.2018 101

UNIVERSITAT
DUISBURG

Polymorphic functions on lists N O

« So there should be a way to reconcile the rigidity of
types with flexible use of functions.

 We want to be able to write
"abc' ++ "def' and [1,2] ++ [3,4],
as well as
elem 2 [1,2] and elem "c® "ab",
but at the same time prevent calls like

"ab™ ++ [3,4] and elem "a” [1,2,3].

www.uni-due.de/en 13.06.2018 102

UNIVERSITAT
DUISBURG

Polymorphic functions on lists - RSN

« S0 what are the types of functions like those seen?

« We do not have, and clearly do not want, different
functions like reverseChar :: [Char] -> [Char]

and reverselnteger :-: [Integer] -> [Integer].

* Instead, we use type variables, as In:

reverse :: [a] -> [a]

 Thatis not, at all, like being untyped. For example, the
type (++) :-: [a] -> [a] -> [a] does not mean
that “anything goes”.
(Still not possible to write this: ""fab™ ++ [3,4].)

www.uni-due.de/en 13.06.2018 103

UNIVERSITAT
DUISBURG

Polymorphic functions on lists - RSN

 We have already seen a lot of functions that fit this

pattern:

head - [a] > a
tail - [a] > [a]
last - [a] -> a
init - [a] -> [a]
length -: [a] -> Int
null - [a] -> Bool
concat :: [[a]l]l -> [a]

* In concrete applications, the type variable gets
Instantiated appropriately: head ""abc™ :: Char.

www.uni-due.de/en 13.06.2018 104

UNIVERSITAT
‘ DUISBURG

ESSEN

Polymorphic functions on lists

e Of course, a polymorphic function does not need to be
polymorphic in all its arguments.

 For example:

(') - [a] -> Int -> a

take :: Int -> [a] -> [a]

drop -: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a].[al)

« And what about zip?

www.uni-due.de/en 13.06.2018 105

Polymorphic functions on lists W DS B R G

ESSEN

« The function zip also takes homogeneous lists as
arguments.

 But unlike the case of (++), where we want to allow
"ab'" ++ "cd' and [1,2] ++ [3,4], butto disallow

"ab'™ ++ [3,4], for zip we want to allow all of the
following:

zip ab™ "cd

zip [1,2] [3,4]
zip "ab" [3,4]

 So the type cannot be like that for (++):
[a] -> [a] > ...

www.uni-due.de/en 13.06.2018 106

Polymorphic functions on lists

UNIVERSITAT
‘ DUISBURG

ESSEN

e |nstead:
zip -: [a] -> [Db]

« Different type variables can be,
Instantiated by different types.

e Hence, all of these make sense:

zip ab™ "cd" -— a
zip [1,2] [3,4] - a
zip ""ab™ [3,4] -— a

« Whereas a mixed call for (++) does not:

“ab™ ++ [3,4] - a

-> [(a,b)]

but do not have to be,

Char, b = Char
Int, b = Int
Char, b = Int

= Char or Int?

www.uni-due.de/en 13.06.2018

107

UNIVERSITAT
DUISBURG

Polymorphic functions in other languages W DS
Open-Minded

« Have you seen something like those types in another
language before?
« Example in Java with Generics:

<T> Li1st<T> reverse(List<T> list)

{.--- 1}
corresponding to:

reverse :©: [a] -> [a]
reverse list = _._.

www.uni-due.de/en 13.06.2018 108

UNIVERSITAT
DUISBURG

Inference of polymorphic types N eIy

« One aspect (among several) that distinguishes
polymorphism in Haskell and its FP predecessors from
those other languages is type inference.

« We need not declare polymorphism, since the compiler
will always infer the most general type automatically.

« For example, for ¥ (X,y) = X the compiler infers
f :: (a,b) > a

« Andfor g (X,y) = 1f p1 > 3 then x else v,
g :: (a,a) -> a.

www.uni-due.de/en 13.06.2018 109

UNIVER SITAT

Consequences of polymorphic types N OISE Y R @

 Polymorphism has really interesting semantic
consequences.

 For example, in an earlier lecture, | mentioned that
always:
reverse [f X | X <- xs]
= | f x| X <- reverse xs]

« What if | told you that this holds, for arbitrary ¥ and xs,
not only for reverse, but for any function with type
[a] —> [a], no matter how it is defined?

« Can you give some such functions (and check the
above claim)?

www.uni-due.de/en 13.06.2018 110

Consequences of polymorphic types

UNIVERSITAT
' DUISBURG

ESSEN

Recall that in the earlier lecture the reverse-claim
occurred in the context of comparing, in the imperative
world, this:
for (1 = 0 1 ; 1++)
result[i1] = ;

vS. this:
for (1 = n; 1 >=0; 1--)
result[i1] =

Not only are these two loops not necessarily
equivalent, but even when imposing conditions under
which they are, we do not get an as general and readily
applicable law as just seen in the declarative world.

www.uni-due.de/en 13.06.2018

111

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Higher-order functions

UNIVERSITAT
' DUISBURG

ESSEN

Higher-order functions

o So far, we have mainly dealt with first-order functions,
that is, functions that take “normal data” as input
arguments and ultimately return some value.

« But we have also already seen functions to which we

passed other functions as arguments. For example,
quickCheck and animationOf.

* Indeed, let us take a look at the type of the latter:
animationOf :-: (Double -> Picture) -> 10 O

 Note: Every function is a (mathematical) value, but not
every value is a function.

www.uni-due.de/en 13.06.2018 113

The types of higher-order functions B 0SB R €

e The type

animationOf :: (Double -> Picture) -> 10 O

means something completely different than the type

animationOf :: Double -> Picture -> 10 O

* Indeed, parentheses in such places are very significant.

e Let us discuss this based on a simpler example type.

www.uni-due.de/en 13.06.2018 114

UNIVERSITAT
DUISBURG

The types of higher-order functions N IS

What are some functions of the following type?

f -- Int -> Int -> Int

And what about the following type?

f - (Int -=> Int) -> Int

What kinds of inputs does either of these take?

And what can they do with their inputs?

www.uni-due.de/en 13.06.2018 115

UNIVERSITAT
' DUISBURG

ESSEN

Functions to pass to higher-order functions

« Where do we get functions from that we can pass as
arguments to higher-order functions?

 Well, in Haskell functions are almost everywhere, right?
So we should not have any shortage of supply.

« Of course, there are many predefined functions already.

 We could also use functions we have explicitly defined

on the top level of our program (such as passing your
own scene function to animationOf).

 Or partial applications of any of those. For example,
(+) :: Int -> Int -> Int, and as a consequence,
(+) 5 :: Int -> Int.

www.uni-due.de/en 13.06.2018 116

UNIVERSITAT
' DUISBURG

ESSEN

Some syntactic specialties

 Indeed, thetype Int -> Int -> Intcould beread as
Int -> (Int -> Int).

« But those parentheses can be omitted.

 Two viewpoints here: a function that takes two Int
values and returns one Int value, or a function that
takes one Int value and returns a function that takes
one Int value and returns one Int value.

e Both viewpoints are valid! No difference in usage
(thanks to Haskell’s function application syntax).

 Another syntactic specialty: so-called “sections”.
For example, “(+) 5" can be written as “(5 +)".

www.uni-due.de/en 13.06.2018 117

Lambda-abstractions W oIS B RE

 We can also syntactically create new functions “on the
fly”, instead of predefined or own, explicitly defined
and named, functions already in the program.

e« Such anonymous functions use the so-called lambda-

abstraction syntax (which we have already seen in the
context of QuickCheck tests): \X -> X + X

S0, some options of functions we could pass to a
function ¥ -z (Int -> Int) -> Int are:

1d, succ, gregorianMonthLength 2018, (- 5),
\X -> X + X, \n -> length [1..n]

www.uni-due.de/en 13.06.2018 118

UNIVERSITAT
DUISBURG

Lambda-abstractions B YISy

« The lambda-abstraction syntax also allows us to get a
clearer view on Haskell’'s function definition syntax
(and its choice to be different from standard
mathematical function definition syntax).

 Namely, the following four definitions are equivalent

(each of typeadd :: Int -> Int -> Int):
add X y = x +vy
add Xx = \y -> X + vy
add = \x -=> \y -> X + vy

add

e With standard mathematical notation, add(x,y) = ,
such variations would not have been so fluent.

\X Yy -=> X +VY

www.uni-due.de/en 13.06.2018 119

UNIVERSITAT
DUISBURG

Currying and uncurrying N %' SeBy

e If we do want, on some occasion, to work with tupled
argument functions, we can “convert” back and forth in
a very general way:

curry -: ((a,b) ->c) -> (a -=> b -> 0©)
curry f = \xy -> f (X,y)

uncurry :-: (a -> b ->c¢c) -> ((a,b) -> ©)
uncurry ¥ = \(X,y) > T x vy

 Atypical use would be if we want to pass some
function to a higher-order function, but it currently is of
the “wrong form” (tupled vs. untupled).

www.uni-due.de/en 13.06.2018 120

UNIVER SITAT

‘ Dy SSEBNU RG

Usefulness of higher-order functions

 Butis any of that really useful to us?

« The examples so far look somewhat esoteric and
artificial, except maybe for the animationOf and

quickCheck “drivers”, which we do not know how to

write ourselves yet though, anyway (due in part to the
Involvement of 10).

 Well, there are many immediately useful higher-order
functions on lists as well...

www.uni-due.de/en 13.06.2018 121

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Higher-order functions on lists

ESSEN

UNIVERSITAT
' DUISBURG

Higher-order functions on lists

« For example, the function
foldll :: (a ->a -> a) -> [a] -> a

puts a (left-associative) function/operator between all
elements of a non-empty list.

« S0 to compute the sum of such alist:
foldll (+) [1,2,3,4]
which will expand to:

1 +2+ 3+ 4

www.uni-due.de/en 13.06.2018 123

UNIVERSITAT
' DUISBURG

ESSEN

Higher-order functions on lists

e Another useful function:

map -: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

 For example:
map even [1..10]

map (dilated 5) [picl, pic2, pic3]

www.uni-due.de/en 13.06.2018 124

Higher-order functions on lists

e And another one:
filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain
predicate.

 For example,
filter 1sPalindrome completeDictionary

filter (> 0.5) bonusPercentagelList

www.uni-due.de/en 13.06.2018 125

Relationship to list comprehensions

Open-Minded

 While the following are not the actual definitions of map
and Fi1lter, we can think of them as such:

map :: (a -=> b) -> [a] -> [Db]
map F list = [fa | a<- list]

filter :: (a -> Bool) -> [a] -> [a]
filter p list = [a | a <- list, p a]

« Conversely, every list comprehension expression, no
matter how complicated with several generators,
guards, etc., can be implemented via map, filter, and
concat.

www.uni-due.de/en 13.06.2018 126

UNIVERSITAT
‘ DUISBURG

ESSEN

Relationship to list comprehensions

e Is programming with map and filter (and foldl1l and

the like) still “wholemeal programming”, which is what
we have mostly used list comprehensions for so far?

* Yes, absolutely. In a sense even more so, since higher-
order functions provide a further step in the direction
of more abstraction.

« For example, if we want to square some numbers from
a given list, subject to the condition that we are
specifically interested in numbers divisibly by four, but
still have to work out whether we want to check this
divisibility before or after squaring, then ...

www.uni-due.de/en 13.06.2018 127

UNIVERSITAT
‘ DUISBURG

ESSEN

Relationship to list comprehensions

... with list comprehensions we would consider, and
maybe experiment with,
[X2 | Xx <- list, X mod 4 == 0]
VS.
[V] XxX<-1Tlist, lety =x"2, y mod 4 == 0]

While with map and filter we would simply decide
between
map ("2) . filter (\x -> x mod 4 == 0)
and
filter (\x -=> x mod™ 4 == 0) . map ("2)

www.uni-due.de/en 13.06.2018 128

UNIVERSITAT

Expressing laws W DS B RS
Open-Minded

 Also, alaw like (mentioned earlier):

reverse [f x| X <- xs]
= [f X | X <- reverse xs |

can nicely be expressed as:

reverse . map f = map T . reverse

e Then we can also ask under which conditions this holds:

filter p . map f = map T . filter ¢

« Generally, higher-order functions are a boon for “lawful
program construction” (see the Richard Bird quote).

www.uni-due.de/en 13.06.2018 129

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Algebraic data types

UNIVERSITAT
' DUISBURG

ESSEN

Types in Haskell

 We have so far seen various types on which functions
can operate, such as number types (Int, Float, ...),
other base types like Bool and Char, as well as list and

tuple constructions to make compound types,
arbitrarily nested ([...1, (..., ..)).

« We have also seen that libraries can apparently define
their own, domain specific types, such as Picture.

« To do the same ourselves: algebraic data types.

« These are a more general and more stringent version of
what is usually know as enumeration or union types.
They are also the inspiration for features like Swift’s
(recursive) enum types.

www.uni-due.de/en 13.06.2018 131

UNIVERSITAT
DUISBURG

Simple enumeration types W P! SeBy

e Let us start simple. Assume we want to be able to talk
about days of the week, and compute things like “this
IS a workday, yes/no”.

« We could fix some encoding of Monday, Tuesday etc.
as numbers (e.g., Monday =1, Tuesday = 2, ...) and
define functions like:

workday :: Integer -> Bool
workday d = d < 6

 In asense, we were lucky here that the intended
property corresponds to number ranges 1-5 and 6—7.

www.uni-due.de/en 13.06.2018 132

UNIVER SITAT

Simple enumeration types N ISR R G

 So let us try to instead express on which days of the week
there is some activity (lecture or exercise session) in the
ProPa course.

« The answer this time is not a simple arithmetic comparison
liked < 6, but we can for example implement:

propabDay :: Integer -> Bool
propaDay 4 = False
propaDay 6 = False
propaDay 7 = False
propaDay @ = True

* In either case, what if we call workday or propaDay with an
input like 127

www.uni-due.de/en 13.06.2018 133

Simple enumeration types

Open-Minded

e Alternative approach, explicit new values:
data Day

= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

e Now:

propabDay :: Day -> Bool

propabDay Thursday = False
propabDay Saturday = False
propabDay Sunday = False
propaDay = True

.. and it is impossible to pass illegal inputs (like 12t day).
« Terminology: type constructors and data constructors.

www.uni-due.de/en 13.06.2018 134

Simple enumeration types

* In addition to excluding absurd inputs, we get more useful
exhaustiveness (and also redundancy) checking.

 For example, remember the game level example:

level :: (Integer, Integer) -> Integer
aTile -: Integer -> Picture

aTile 1 = block

aTile 2 = pearl

aTile 3 = water

aTile 4 = air

aTile = blank

« Imagine that we introduce a new kind of tile, produce its new
“number code” inside the level-function, but forget to also
handle it in the aTile-function. No compiler warning!

www.uni-due.de/en 13.06.2018 135

Simple enumeration types

Open-Minded

If we had instead introduced a new type:
data Tile = Blank | Block | Pearl | Water | Alr
and used level :: (Integer, Integer) -> Tile

and: aTile -: Tile -> Picture
aTile Blank = blank

aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Alr = alr

then adding another value to data Tile could not go
unnoticed in aTile.

The compiler would actually warn us if we forgot to handle the
new value there!

www.uni-due.de/en 13.06.2018 136

General algebraic data types

« Going beyond simple enumeration types, algebraic data
types can encapsulate additional values in the alternatives.

« That is, the data constructors can take arguments.
 For example:

data Date = Date Int Int Int
data Time = Hour Int
data Connection = Train Date Time Time

| Flight String Date Time Time

« A possible value of type Connection:

Train (Date 20 04 2011) (Hour 11) (Hour 14)

www.uni-due.de/en 13.06.2018 137

General algebraic data types

Open-Minded

« Computation on such types is via pattern-matching:

travelTime :: Connection -> Int

travelTime (Train _ (Hour d) (Hour a))

—a-d+ 1
travelTime (Flight = (Hour d) (Hour a))
—a-d+ 2

e At the same time, the data constructors are also normal
functions, for example:

Date :-: Int -> Int -> Int -> Date

Train -: Date -> Time -> Time -> Connection

www.uni-due.de/en 13.06.2018

138

UNIVERSITAT
DUISBURG

Recursive types W PSRy

 Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

« Values of this type:

Zero, Succ Zero, Succ (Succ Zero), ...

« Computation by recursive function definitions:

add -: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)

www.uni-due.de/en 13.06.2018 139

DUISBURG

Recursive types W DBy

 With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Int Tree
« Values: Leaf, Node Leaf 2 Leaf, ...

« Computation:

height :: Tree -> Integer
height Leaf
=0
height (Node left _ right)
= 1 + max (height left) (height right)

www.uni-due.de/en 13.06.2018 140

DUISBURG

Polymorphism in algebraic data types W ey

Just like functions, algebraic data types can be
polymorphic:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

height :: Tree a -> Integer
height Leaf
=0

height (Node left _ right)
= 1 + max (height left) (height right)

www.uni-due.de/en 13.06.2018

141

Polymorphism in algebraic data types

Open-Minded

 Another example, from the standard library:

data Maybe a = Nothing | Just a

 Popular for functions that would otherwise be partial.
e Such as also in are-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile
aTile -: Tile -> Picture

aTile Block = block

aTile Pearl = pearl

aTile Water = water

aTile Alr = alr

www.uni-due.de/en 13.06.2018 142

Persistency of data structures

 Note that, just as any other data in Haskell, values of
algebraic data types are immutable.

« For example, we do not change any tree in a function
like this:

insert -: Int -> Tree Int -> Tree Int

insert n Leaf = Node Leaf n Leaf

insert n tree@(Node left m right)
| n < m = Node (insert n left) m right
| n > m = Node left m (insert n right)
| otherwise = tree

e Discuss what this means ...

www.uni-due.de/en 13.06.2018 143

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Lists as algebraic data type

UNIVERSITAT
DUISBURG

Another example data structure B Oe!SeBy

« If Haskell did not yet have a list type, we could
Implement one ourselves:

data List a = N1l | Cons a (List a)

« Examplevalue: Cons 1 (Cons 2 Nil) :-: List Int

« Computation:

length -: List a -> Int
length N1l =0
length (Cons rest) 1

+ length rest

www.uni-due.de/en 13.06.2018 145

UNIVERSITAT
DUISBURG

Lists as just another algebraic data type N "

* In fact, modulo special syntax, that is exactly what
Haskell lists are:

data [a] = L1 | () a [al

e S0, for example, [1,2] is simply 1:(2:[]), which
thanks to right-associativity of “ -7 can also be written
as 1:2:1].

e Functions on lists can then, of course, also be defined
using pattern-matching.

www.uni-due.de/en 13.06.2018 146

Pattern-matching on lists W Ol R S

Some example functions:

length -: [a] -> Int
length [] 0
length (_:-rest) 1 + length rest

append :: [a] -> [a] -> [a]

append [] YyS = yS

append (X:Xs) ys = X - append Xs ys
head :: [a] -> a

head (X:) = X

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (vy:ys) = (X,y) - ziIp XS ys
Zip _ _ = [

www.uni-due.de/en 13.06.2018 147

UNIVERSITAT
DUISBURG

Pattern-matching on lists W %Sy

 Note how clever arrangement of cases/equations can
make function definitions more succinct.

 For example, we might on first attempt have defined
zip as follows:

zip - [a] -> [b] -> [(a,b)]

zip [1 _ = [

zip (x:xs) [1 = [

zip (X:xs) (y:ys) = (X,Y) :- ziIp XS ysS

 But the version from the previous slide is equivalent.

e Both versions also work with infinite lists, btw.

www.uni-due.de/en 13.06.2018 148

Higher-order examples

Also, as another example of a function we have used.:

map :: (a -> b) -> [a] -> [b]
map T [] []

map f (X:Xs) T x - map F Xs

And indeed related:

treeMap :-: (@ -> b) -> Tree a -> Tree b
treeMap T Leaf = Leaf
treeMap ¥ (Node left x right)
= Node (treeMap T left)
(f x)
(treeMap T right)

www.uni-due.de/en 13.06.2018 149

UNIVERSITAT
DUISBURG

Higher-order examples W %Sy

e Also remember the function
foldll :: (a ->a -> a) -> [a] -> a

which puts a (left-associative) function/operator
between all elements of a non-empty list.

e Itis amember of awhole family of related functions,
the most prominent of which is foldr, defined thus:

foldr :- (@ ->b ->b) ->b ->[a] -> Db
foldr _ c [] = C
foldr f ¢ (x:xs) = f x (foldr T c xs)

www.uni-due.de/en 13.06.2018 150

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

More on pattern-matching

UNIVERSITAT
DUISBURG

Evaluation by pattern-matching N 'SRy

o Ultimately, pattern-matching is what drives (lazy)
evaluation in Haskell.

 For example, let us consider how the expression
head (tairl (f [3, 3 + 1]))

IS evaluated, given the following function definitions
(and the known head and tainl functions):

T :: [Int] -> [Int] g :: Int -> Int
T[] = 11 g3=g9g4
T (X:xs) =g x - F xs gn=n+1

www.uni-due.de/en 13.06.2018 152

UNIVER SITAT

‘ Dy SSEBNU RG

Explicit case-expressions

« Pattern-matching is not restricted to the left-hand sides of
function definitions, it can also occur in expressions, using

the case-keyword.

 For example, instead of something like this:

iIT 1sNothing maybeValue

then .. something ..
else ..something else, using fromJust maybeValue ..

we can (and would usually prefer to) write this:

case maybeValue of
Nothing -> .. something ..

Just value -> ..something else, directly using value ..

153

www.uni-due.de/en 13.06.2018

Binding of variables

o Pattern-matching always binds variable names that occur in
patterns, possibly shadowing existing things of same name.

« That sometimes leads to confusion for beginners, such as
why it does not work to write a function like the following
one (given the existence of red :: Color etc., imported

from CodeWorld):

primaryColor :: Color -> Bool
primaryColor red = True
primaryColor green = True
primaryColor blue True
primaryColor False

www.uni-due.de/en 13.06.2018 154

UNIVERSITAT

DEUS I SsgNU RG

Open-Minded

Input / Output

“In short, Haskell is the world’s finest imperative
programming language.”
Simon Peyton Jones

UNIVER SITAT
DUISBURG

Input / Output in Haskell, general approach W %'

Even in declarative languages, there should be some
(disciplined) way to embed “imperative” commands like
“print something to the screen”.

* In pure functions, no such interaction with the operating
system /user /... is possible.

 And clearly it should not be, since it would defy referential
transparency.

« Butthereis a special do-notation in Haskell that enables
Interaction, and from which one can call “normal” functions.

o All the features and abstraction concepts (higher-order,
polymorphism, ...) of Haskell remain available even in and
with do-code.

www.uni-due.de/en 13.06.2018 156

UNIVERSITAT
‘ DY ISBURG

Input / Output in Haskell, very simple example

e Getting two numbers from the user and then printing
some value computed from them to the screen:

- 10 O

- do n <- readLn
m <- readLn
print (prod [n..m])

prod -: [Int] -> Int
prod [] =1
prod (X:Xxs) X * prod Xxs

 Note the (apparent) type inference on n and m.

www.uni-due.de/en 13.06.2018

157

UNIVERSITAT
DUISBURG

Input / Output in Haskell, the principles B5s

« Thereis a predefined type constructor 10, such that for
every type like Int, Tree Bool, [(Int,Bool)] etc.,
the type 10 Int, 10 (Tree Bool), ... can be bulilt.

 The interpretation of atype 10 ais that elements of
that type are not themselves concrete values, but
Instead are (potentially arbitrarily complex) sequences
of input and output operations, and computations

depending on values read in, by which ultimately a
value of type a Is created.

 An (independently executable) Haskell program overall
always has an “10 type”, usually main -: 10 ().

www.uni-due.de/en 13.06.2018 158

UNIVERSITAT
‘ DUISBURG

ESSEN

Input / Output in Haskell, the principles

 To actually create “ 10 values”, there are certain
predefined primitives (and one can recognize their 10-

related character based on their types).

« For example, there are getChar :: 10 Char and
putChar :: Char -> 10 ().
 Also, for several characters, getLine :-: 10 String

and putStr, putStrLn :: String -> 10 ().

 More abstractly, for any type for which Haskell knows

(or was instructed) how to convert from or to strings,
readLn :-: Read a => 10 afor input as well as

print :: Show a => a -> 10 () for output.

www.uni-due.de/en 13.06.2018 159

UNIVER SITAT

Input / Output in Haskell, the principles W OIS B R G

To combine 10-computations (i.e., to build more complex
action sequences based on the 10 primitives), we can use the
do-notation.

Its general form is: do cmd,
X, <- cmd,
X5 <- cmd,
cmd,
Xg <- cmdg

where each cmd; has an 10 type and to each x; (if present) a
value of the type encapsulated in the cmd; will be bound (for
use in the rest of the do-block), namely exactly the result of

executing cmd;.

www.uni-due.de/en 13.06.2018 160

UNIVERSITAT
‘ DUISBURG

ESSEN

Input / Output in Haskell, the principles

 The do-block as a whole has the type of the last cmd...
e For that last command, generally no x, Is present.

o Often also useful (for example, at the end of a do-

block): a predefined function return -: a -> 10 a
that simply yields its argument, without any actual 10
action.

« What is never ever, at all, possible or allowed is to

directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the

encapsulated value from an 10 computation, i.e., to
simply turn an 10 avalue into an a value.

www.uni-due.de/en 13.06.2018 161

User defined “control structures”

As mentioned, also in the context of 10-computations, all
abstraction concepts of Haskell are available, particularly
polymorphism and definition of higher-order functions.

 This can be employed for defining things like:

while :: (a -> Bool) -> (a -> 10 a) -> a
-> 10 a
while p body = loop
where loop X = 1f p X then do X" <- body X
loop X"
else return Xx

e Which can then be used thus:

while (< 10)
g\n -> do {print n; return (n+l)})
0

www.uni-due.de/en 13.06.2018

162

	Foliennummer 1
	Foliennummer 2
	About us
	About you
	This lecture
	The exercises
	Role of the exercises
	About our use of Moodle
	Eventually, the exam
	Differences to previous instances of this course
	Foliennummer 11
	Many high-level programming languages in existence
	Another perspective
	And yet another one
	Also, popularity contests, …
	So, why such diversity?
	So, why such diversity?
	And, yet, there are common principles
	A rough plan of the lecture
	Declarative programming
	Other reasons for studying “new” paradigms
	Foliennummer 22
	Books on Haskell
	Books on Prolog
	Foliennummer 25
	A first complete animation program
	Foliennummer 27
	Expression-based programming
	Properties of (pure) expressions
	Properties of (pure) expressions
	Properties of (pure) expressions
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	So what?
	Foliennummer 38
	Describing a picture via an expression
	Describing a picture via an expression
	Describing an animation via a function
	Another example
	Foliennummer 43
	A desire for additional expressivity
	List comprehensions
	Brief recap from last week
	Brief recap from last week
	Case distinctions
	A return to list comprehensions
	A return to list comprehensions
	Contrast to for-loops
	Another example
	More mundane examples of list comprehensions
	More mundane examples of list comprehensions
	Foliennummer 55
	“Oddities” of syntax at the type level
	“Oddities” of syntax at the expression/function level
	Other observations
	Some concrete hints
	Layout-sensitivity
	Other syntax hints
	Specifics about number types
	… and arithmetic operators
	… and arithmetic operators
	Types beside number types
	Some observations based on exercise submissions
	Some observations based on exercise submissions
	Some observations based on exercise submissions
	Some observations based on exercise submissions
	Foliennummer 70
	Expressing conditional behaviour
	Expressing conditional behaviour
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definitions generally
	Function definitions generally
	Foliennummer 85
	A few words about lists up front
	Examples of existing (first-order) functions on lists
	Our first own function on lists
	Infinite lists
	Infinite lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Wholemeal programming on lists
	Foliennummer 100
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions in other languages
	Inference of polymorphic types
	Consequences of polymorphic types
	Consequences of polymorphic types
	Foliennummer 112
	Higher-order functions
	The types of higher-order functions
	The types of higher-order functions
	Functions to pass to higher-order functions
	Some syntactic specialties
	Lambda-abstractions
	Lambda-abstractions
	Currying and uncurrying
	Usefulness of higher-order functions
	Foliennummer 122
	Higher-order functions on lists
	Higher-order functions on lists
	Higher-order functions on lists
	Relationship to list comprehensions
	Relationship to list comprehensions
	Relationship to list comprehensions
	Expressing laws
	Foliennummer 130
	Types in Haskell
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	General algebraic data types
	General algebraic data types
	Recursive types
	Recursive types
	Polymorphism in algebraic data types
	Polymorphism in algebraic data types
	Persistency of data structures
	Foliennummer 144
	Another example data structure
	Lists as just another algebraic data type
	Pattern-matching on lists
	Pattern-matching on lists
	Higher-order examples
	Higher-order examples
	Foliennummer 151
	Evaluation by pattern-matching
	Explicit case-expressions
	Binding of variables
	Foliennummer 155
	Input / Output in Haskell, general approach
	Input / Output in Haskell, very simple example
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	User defined “control structures”

