
Programming Paradigms – Haskell part

Summer Term

From a Moodle survey in 2019

3

What language did you mainly use in GPT?

05.04.2022fmidue.github.io/ProPa-Slides

Java Python

4

In what language are you most proficient?

05.04.2022fmidue.github.io/ProPa-Slides

C

Java

other

Python

5

What is your favourite programming language?

05.04.2022fmidue.github.io/ProPa-Slides

C

C#

Java

other

Python

Introduction / Motivation

“To know another language is to have a second soul.”

Charlemagne, 747/748 – 814

7

Many high-level programming languages in existence

05.04.2022fmidue.github.io/ProPa-Slides

© 2004 O'Reilly Verlag GmbH & Co. KG

8

Another perspective

05.04.2022fmidue.github.io/ProPa-Slides

From “American Scientist”: The Semicolon Wars, © 2006 Brian Hayes

9

Also, popularity contests, …

05.04.2022fmidue.github.io/ProPa-Slides

http://preview.tinyurl.com/popular-languages

http://preview.tinyurl.com/popular-languages

10

And yet another visualization

05.04.2022fmidue.github.io/ProPa-Slides

http://preview.tinyurl.com/language-influences

http://preview.tinyurl.com/language-influences

11

So, why such diversity?

• Can one (or each) language do “more” than others?

• Are there problems that one cannot solve in certain

languages?

• Is there a “best” language? At least for a certain

purpose or application area?

• What does actually separate different programming

languages from each other?

05.04.2022fmidue.github.io/ProPa-Slides

12

So, why such diversity?

Some relevant distinctions:

• syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)

• verbosity vs. succinctness (e.g., COBOL vs. Haskell)

• compiled vs. interpreted (e.g., C vs. Perl)

• domain-specific vs. general purpose (e.g., SQL vs. Java)

• sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)

• typed vs. untyped (e.g., Haskell vs. Prolog)

• dynamic vs. static (e.g., Ruby vs. ML)

• declarative vs. imperative (e.g., Prolog vs. C)

• object-oriented vs. ???

• …

05.04.2022fmidue.github.io/ProPa-Slides

13

And, yet, there are common principles

Approaches to the specification of programming languages

• … describing syntax,

• … describing semantics,

as well as implementation strategies.

Language concepts:

• variables and bindings

• type constructs

• control structures and abstraction features

And, of course, paradigms that span a whole class of languages.

05.04.2022fmidue.github.io/ProPa-Slides

14

A rough plan of the lecture

• We will focus on two paradigms: functional and logic

programming.

• For each, we pick a specific language: Haskell, Prolog.

• We consider actual programming concepts, and also

aspects related to semantics (evaluation, resolution).

• With Haskell, we explore typing concepts like

inference, genericity, polymorphism.

• We discuss and compare concepts like variables,

expressions vs. commands, etc., in different

languages.

05.04.2022fmidue.github.io/ProPa-Slides

15

Declarative programming

• Functional and logic programming are often called “declarative” or

“descriptive” programming.

• The idea is that programmers can think more in terms of “What?”

instead of “How?”, in other words, more in terms of specification

than planning a certain computation process.

• Of course, there is still a need for algorithmic thinking etc., as

there is no magic.

• But it is true that declarative programming has a more high-level,

sometimes mathematical, feel to it.

• Also, the “What-instead-of-How” aspect will become concrete with

observations like the roles of expressions vs. commands in

different languages/paradigms.

• A side benefit in declarative languages is often reduced syntax.

05.04.2022fmidue.github.io/ProPa-Slides

16

Other reasons for studying “new” paradigms

• Learning different languages now makes it easier to

pick up new languages later on.

• Concepts from once “exotic” languages make their way

into “mainstream” ones.

• In some application domains, there is an increased

demand for very disciplined, conceptually expressive,

mathematics-based languages.

• Generally, knowing more paradigms increases capacity

to express ideas.

05.04.2022fmidue.github.io/ProPa-Slides

Literature

18

Books on Haskell

• Programming in Haskell, 2nd edition; Graham Hutton

• Haskell – The Craft of Functional Programming, 3rd

edition; Simon Thompson

• Thinking Functionally with Haskell; Richard Bird

• Haskell-Intensivkurs; Marco Block, Adrian Neumann

• Einführung in die Programmierung mit Haskell; Manuel

Chakravarty, Gabriele Keller

05.04.2022fmidue.github.io/ProPa-Slides

19

Books on Prolog

• Learn Prolog Now!; Patrick Blackburn, Johan Bos,

Kristina Striegnitz

• Programmieren in Prolog; William Clocksin,

Christopher Mellish

• Prolog – Verstehen und Anwenden; Armin Ertl

05.04.2022fmidue.github.io/ProPa-Slides

A first glimpse of FP with CodeWorld

21

A first complete animation program

import CodeWorld

main = animationOf scene

scene t =

circle 8

& colored green (solidRectangle 4 4)

& rotated (pi/2)

(translated 8 0 (colored red (polygon [(0,0),(1,-0.5),(1,0.5)])))

& pictures

[rotated ((a+t)*pi/20)

(rectangle (4+a) (4+a)) | a <- [0, 0.5 .. 9]]

05.04.2022fmidue.github.io/ProPa-Slides

Expressions vs. commands

23

Expression-based programming

• Proposition:

Functional programming is about expressions,

whereas imperative programming is about commands.

• Some kinds of expressions you (probably) know:

𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐

𝒑 ∧ ¬ 𝒒 ∨ 𝒓

SUMIF(A1:A8,"<0")

• Generally: terms in any algebra, built from constants

and functions/operators, possibly containing variables

05.04.2022fmidue.github.io/ProPa-Slides

24

Properties of (pure) expressions

Expressions

• … are compositional, built completely from

subexpressions,

• … often have a meaningful type,

• … have a value, which does not depend on “hidden

influences”, and does not change on re-evaluation or

based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions

are built from subexpressions), but extends to typing and

semantics/evaluation.

05.04.2022fmidue.github.io/ProPa-Slides

25

Properties of (pure) expressions

Example 𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐:

The constants are 𝟏, 𝟐, 𝟑 of type ℤ.

The operators are + ∶ ℤ × ℤ → ℤ, ∙ ∶ ℤ × ℤ → ℤ, ()𝟐 ∶ ℤ → ℤ.

The value of 𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐 depends only on the value of

𝟐 and the value of 𝟑 ∙ (𝒙 + 𝟏)𝟐, the latter only depends on

the value of 𝟑 and the value of (𝒙 + 𝟏)𝟐, …

05.04.2022fmidue.github.io/ProPa-Slides

26

Properties of (pure) expressions

• Thanks to these properties, we can easily use notation

known from mathematics, for example reformulating

“𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐” as follows:

“𝟐 + 𝟑 ∙ 𝒚𝟐 where 𝒚 = 𝒙 + 𝟏”.

• Also, we can apply simplifications, for example

replacing exponentiation by multiplication:

“𝟐 + 𝟑 ∙ 𝒚 ∙ 𝒚 where 𝒚 = 𝒙 + 𝟏”.

• And while this example was about arithmetic

expressions, the concepts apply much more generally.

• But only if we have pure expressions!

05.04.2022fmidue.github.io/ProPa-Slides

27

The situation in imperative programming languages

• So what is different in imperative programming?

• Don’t we also have expressions there?

For example in:

b = 100000;

if (z > 0) {

z = 100 + z;

j = 0;

while (b < 200000) {

b = b * z / 100;

j = j + 1; }

} else j = -1;

• Yes, there are expressions, but they are not the dominating

syntactical construct. Commands are!

05.04.2022fmidue.github.io/ProPa-Slides

28

The situation in imperative programming languages

• Why is this difference relevant? What properties do commands, as

opposed to expressions, not have?

• Well, for example, they are not even syntactically compositional:

Not every well-formed smaller part of a command is itself a

command.

while (b < 200000) {

b = b * z / 100;

j = j + 1;

}

• Instead, expressions occur, also keywords, …

• Moreover, commands do not always have a meaningful type.

• Or even just a value. (Try giving a value for the above block.)

05.04.2022fmidue.github.io/ProPa-Slides

29

The situation in imperative programming languages

• As a consequence, we cannot name arbitrary well-formed smaller

parts (as opposed to what we saw for expressions and their

subexpressions).

• For example, we cannot simply write:

body = {

b = b * z / 100;

j = j + 1;

}

while (b < 200000) body;

• Even workarounds involving functions/procedures/methods are

not as flexible and useful as the kind of mathematical notation for

expressions: “𝟐 + 𝟑 ∙ 𝒚𝟐 where 𝒚 = 𝒙 + 𝟏”.

05.04.2022fmidue.github.io/ProPa-Slides

30

The situation in imperative programming languages

• Okay, so what about the sublanguage of expressions in an

imperative language? Can they, at least, be treated as we saw

before?

• Not in general! For example, we saw that mathematically we

should be able to rewrite something like “𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ (𝒆𝒙𝒑𝟑)
𝟐” as

any of:

𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒗𝒂𝒓
𝟐 where 𝒗𝒂𝒓 = 𝒆𝒙𝒑𝟑

𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒗𝒂𝒓 ∙ 𝒗𝒂𝒓 where 𝒗𝒂𝒓 = 𝒆𝒙𝒑𝟑
𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒆𝒙𝒑𝟑 ∙ 𝒆𝒙𝒑𝟑

• But code snippets like “result = exp1 + exp2 * (exp3)^2;”
do not always take well to being replaced by:

var = exp3; result = exp1 + exp2 * var^2;

• … or by code snippets corresponding to the other expression

alternatives above.

05.04.2022fmidue.github.io/ProPa-Slides

31

The situation in imperative programming languages

• Indeed, consider these four code snippets:

result = exp1 + exp2 * (exp3)^2;

var = exp3; result = exp1 + exp2 * var^2;

var = exp3; result = exp1 + exp2 * var * var;

result = exp1 + exp2 * exp3 * exp3;

• And imagine instantiations with exp3 being the “expression” i++

or some invocation f() for a procedure/method f.

• The problem is that expressions in an imperative language are

typically not pure expressions. Instead, they have side-effects!

• (For same reason, re-evaluation of an expression can change the

value. And order of evaluating subexpressions becomes relevant.)

05.04.2022fmidue.github.io/ProPa-Slides

32

So what?

• So, how “bad” is all that?

• Do these artificial examples “prove” anything?

• Well, I haven’t (yet?) really argued that the pure
expression-based style is better in some sense.

• But what should have become clear is that it is
different!

• In any case, let us (again) “do” something with
CodeWorld. (… also in your first exercise tasks)

05.04.2022fmidue.github.io/ProPa-Slides

Another look at FP with CodeWorld

34

Describing a picture via an expression

A rather simple example:

main :: IO ()

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture

triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective …

05.04.2022fmidue.github.io/ProPa-Slides

35

Brief recap from last week

• Expressions: syntactic structures one could imagine
after the “=” in an assignment “var = …” in C or Java.

• Values: results of evaluating expressions, obtained by

combining values of subexpressions.

• Commands: syntactic structures that are characterized

not so much by what (if anything at all) they evaluate

to, but rather by what effect they have (change of

storage cells, looping, etc.).

• In a pure setting without commands, any two

expressions that have the same value can be replaced

for each other, without changing the behaviour of the

program.

05.04.2022fmidue.github.io/ProPa-Slides

36

Describing a picture via an expression

Observations:

• Compositionality on level of syntax, types, and values.

• Pictures are expressions/values here, can be named etc.

• Functions/operators used:

circle : ℝ → Picture

polygon : [ℝ × ℝ] → Picture

colored : Color × Picture → Picture

translated : ℝ × ℝ × Picture → Picture

& : Picture × Picture → Picture

• Properties like: translated a b (colored c d)

≡ colored c (translated a b d)

05.04.2022fmidue.github.io/ProPa-Slides

37

Describing an animation via a function

A slight variation of example from last week:

main :: IO ()

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

• Dependence on time expressed via parameter t.

• That parameter is never set by us ourselves for the animation.

• No for-loop or other explicit control.

• Instead, the animationOf construct takes care “somehow”

(this involves evaluating scene for different t).

05.04.2022fmidue.github.io/ProPa-Slides

38

Another example

• Mathematically describing dynamic behaviour as a function of

time should not be much of a surprise.

• A well-known physics example:

𝒙 𝒕 = 𝒗𝟎𝒙 ∙ 𝒕

𝒚 𝒕 = 𝒗𝟎𝒚 ∙ 𝒕 −
𝒈

𝟐
∙ 𝒕𝟐

• As a program:

scene :: Double -> Picture

scene t = cliff & translated x y (circle 0.1)

where x = 3 * t

y = 6 * t - 9.81 / 2 * t^2

cliff = polyline [(-5,0),(0,0),(0,-2)]

05.04.2022fmidue.github.io/ProPa-Slides

Rich expressions

40

A desire for additional expressivity

• In the examples today, we have already expressed

continuous distribution, throughout time, via functions.

• What if we also, or alternatively, want a discrete

distribution, “throughout space”?

• So, instead of one triangle moving in time, we want

several static triangles at different places.

• But we do not really want to replicate these “by hand”.

• Maybe now is the time for a for-loop?

• No, we don’t have that.

• But what do we have instead?

05.04.2022fmidue.github.io/ProPa-Slides

41

One kind of richer expressions: list comprehensions

Using a list comprehension:

main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• With pictures :: [Picture] -> Picture.

• And a list comprehension [scene d | d <- [0..5]].

• This is not exactly like a for-loop, for several reasons.

• Instead, it is like a mathematical set comprehension 𝟐 ∙ 𝒏 𝒏 ∈ ℕ .

05.04.2022fmidue.github.io/ProPa-Slides

42

More mundane examples of list comprehensions

> [1,3..10]

[1,3,5,7,9]

> [x^2 | x <- [1..10], even x]

[4,16,36,64,100]

> [y | x <- [1..10], let y = x^2, mod y 4 == 0]

[4,16,36,64,100]

> [x * y | x <- [1,2,3], y <- [1,2,3]]

[1,2,3,2,4,6,3,6,9]

05.04.2022fmidue.github.io/ProPa-Slides

43

More mundane examples of list comprehensions

> [(x,y) | x <- [1,2,3], y <- [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [(x,y) | y <- [4,5], x <- [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

> [(x,y) | x <- [1,2,3], y <- [1..x]]

[(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

> [x ++ y | (x,y) <- [("a","b"),("c","d")]]

["ab","cd"]

05.04.2022fmidue.github.io/ProPa-Slides

44

So where are we, expressivity-wise?

Some takeaways from examples we have seen:

• Non-constant behaviour expressed as functions, in the
mathematical sense. 𝒇 𝒙 = ⋯

• Such a description defines the behaviour “as a whole”, not
in a “piecemeal” fashion.

• For example, there is no “first run this piece of animation,
then that piece, and then something else”.

• Actually, there is not even a concept of “this piece of
animation stops at some point”.

Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential
commands, with imperative keywords or semicolons etc.

List comprehensions are also not the answer, because they do
not define functions, just (list) values. Instead, …

05.04.2022fmidue.github.io/ProPa-Slides

45

Case distinctions

• Switching by conditional expressions:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• This is very much in line with case distinctions in

mathematical functions:

𝒇 𝒙 = ቊ
−𝒙, 𝒊𝒇 𝒙 < 𝟎
𝒙, 𝒆𝒍𝒔𝒆

05.04.2022fmidue.github.io/ProPa-Slides

46

Comparison to the situation in imperative setting

• In C/Java we have two forms of if on commands:

if (...) { ... }

if (...) { ... } else { ... }

• In an expression language, the form without else does not make

sense, so in Haskell we always have:

if ... then ... else ...

• This corresponds to C/Java’s conditional operator:

... ? ... : ...

05.04.2022fmidue.github.io/ProPa-Slides

47

Some usage hints on case distinctions in Haskell

• Pragmatically, an if-then-else expression “without an else”

would be realized by having some “neutral value” in the else-

branch. Remember:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• Similarly, in a list context: if condition then list else []

• Also, do not hesitate to use if-then-else as subexpressions

freely:
f x y (if exp1 then exp2 else exp3)

≡ if exp1 then f x y exp2 else f x y exp3

05.04.2022fmidue.github.io/ProPa-Slides

Some remarks on syntax and types

49

“Oddities” of syntax at the type level

Instead of:

circle : ℝ → Picture

polygon : [ℝ ×ℝ] → Picture

colored : Color × Picture → Picture

translated : ℝ × ℝ × Picture → Picture

& : Picture × Picture → Picture

type signatures actually look like this:

circle :: Double -> Picture

polygon :: [(Double, Double)] -> Picture

colored :: Color -> Picture -> Picture

translated :: Double -> Double -> Picture -> Picture

(&) :: Picture -> Picture -> Picture

05.04.2022fmidue.github.io/ProPa-Slides

50

“Oddities” of syntax at the expression/function level

• Instead of f(x) and g(x,y,z), we write f x and g x y z.

• As an example for nested function application, instead of
g(x,f(y),z), we write g x (f y) z.

• The same syntax is used at function definition sites, so something

like

float f(int a, char b)

{ ... }

in C or Java would correspond to

f :: Int -> Char -> Float

f a b = ...

in Haskell.

05.04.2022fmidue.github.io/ProPa-Slides

51

Layout-sensitivity

In Haskell, this:

let y = a * b

f x = (x + y) / y

in f c + f d

is equivalent to:

let { y = a * b; f x = (x + y) / y }

in f c + f d

But these are not accepted:

let y = a * b let y = a * b

f x = (x + y) / y f x = (x + y) / y

in f c + f d in f c + f d

05.04.2022fmidue.github.io/ProPa-Slides

52

Other syntax remarks

• Haskell beginners tend to use unnecessarily many
brackets. For example, no need to write f (g (x)) or
(f x) + (g y), since f (g x) and f x + g y

suffice.

• Further brackets can sometimes be saved by using the
$ operator, for example writing f $ g x $ h y instead
of f (g x (h y)). I don’t like it in beginners’ code.

• We let Autotool give warnings about redundant
brackets, as well as about overuse of $.
Sometimes we enforce adherence to those warnings.

05.04.2022fmidue.github.io/ProPa-Slides

53

A specific observation based on exercise submissions

If you have repeated occurrences of a common subexpression,

share them! For example, instead of something like this:

scene t =

if 8 * sin t > 0

then translated (8 * cos t) (8 * sin t) ...

else ...

rather write this:

scene t =

let x = 8 * cos t

y = 8 * sin t

in if y > 0 then translated x y ... else ...

05.04.2022fmidue.github.io/ProPa-Slides

54

Specifics about number types

• Haskell has various number types: Int, Integer,

Float, Double, Rational, …

• Number literals can have a different concrete type
depending on context, e.g., 3 :: Int, 3 :: Float,

3.5 :: Float, 3.5 :: Double

• For general expressions there are overloaded
conversion functions, for example fromIntegral with,

among others, any of the types Int -> Integer,

Integer -> Int, Int -> Rational, …, and

truncate, round, ceiling, floor, each with any of

the types Float -> Int, Double -> Integer, …

05.04.2022fmidue.github.io/ProPa-Slides

55

… and arithmetic operators

• Operators are also overloaded, and often no
conversion is necessary, for example in 3 + 4.5 or

also in:
f x = 2 * x + 3.5

g y = f 4 / y

• In other cases, conversion is necessary, for example in

this:
f :: Int -> Float

f x = 2 * fromIntegral x + 3.5

or:
f x = 2 * x + 3.5

g y = f (fromIntegral (length "abcd")) / y

05.04.2022fmidue.github.io/ProPa-Slides

56

… and arithmetic operators

• Some operators are available only at certain types, e.g.,
no division symbol “/” on integer types.

• Instead, the function div :: Int -> Int -> Int

(also on Integer).

• Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 `div` 3 instead

of div 17 3.

• Useful mathematical constants and functions exist,
e.g., pi, sin, sqrt, min, max, …

05.04.2022fmidue.github.io/ProPa-Slides

57

Some observations based on past years’ exercises

• In case of doubt concerning number conversions, it
usually does not hurt to add some fromIntegral-

calls, which in the worst case will be no-ops (since,
among others, fromIntegral :: Int -> Int).

• It is always a good idea to write down type signatures

for (at least) top-level functions. Among other benefits,

it saves you from having to deal with (errors involving)

types like:
fun :: (Floating a, Ord a) => a -> a

05.04.2022fmidue.github.io/ProPa-Slides

58

Types beside number types

Other pre-existing types:

• Type Bool, with values True and False and operators

&&, ||, and not.

• Type Char, with values 'a', 'b', …, '\n' etc., and

functions succ, pred, as well as comparison operators.

• List types: [Int], [Bool], [[Int]], …, with various

pre-defined functions and operators.

• Character sequences: type String = [Char], with

special notation "abc" instead of ['a','b','c'].

• Tuple types: (Int,Int), (Int,String,Bool),

((Int,Int),Bool,[Int]), also [(Bool,Int)] etc.

05.04.2022fmidue.github.io/ProPa-Slides

Programming by case distinction

(more ways of doing it)

60

Expressing conditional behaviour

Remember:

• Switching by conditional expressions:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• This is very much in line with case distinctions in
mathematical functions:

𝒇 𝒙 = ቊ
−𝒙, 𝒊𝒇 𝒙 < 𝟎
𝒙, 𝒆𝒍𝒔𝒆

05.04.2022fmidue.github.io/ProPa-Slides

61

Expressing conditional behaviour

• Likely not yet seen, function definition using guards:

scene t

| t <= pi = ...

| pi < t && t <= 2 * pi = ...

| 2 * pi < t = ...

• This is again similar to mathematical notation:

𝒇 𝒙 = ቐ

𝟎, 𝒊𝒇 𝒙 ≤ 𝟎
𝒙, 𝒊𝒇 𝟎 < 𝒙 ≤ 𝟏
𝟏, 𝒊𝒇 𝒙 > 𝟏

05.04.2022fmidue.github.io/ProPa-Slides

62

Function definition using guards

• Let us discuss some details based on this example:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| n > 0 = n * factorial (n - 1)

• First of all, what about the order of clauses?

• Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer

factorial n

| n > 0 = n * factorial (n - 1)

| n == 0 = 1

05.04.2022fmidue.github.io/ProPa-Slides

63

Function definition using guards

• What if the guard conditions overlap?

• Then this is okay:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

but this is problematic:

factorial :: Integer -> Integer
factorial n

| n >= 0 = n * factorial (n - 1)
| n == 0 = 1

• Always the first matching clause is used!

05.04.2022fmidue.github.io/ProPa-Slides

64

Function definition using guards

• Even with the “correct” order:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| n >= 0 = n * factorial (n - 1)

we can have problems with some inputs.

• If no clause matches, we get a runtime error!

05.04.2022fmidue.github.io/ProPa-Slides

65

Function definition using guards

• In fact, if called with appropriate settings, the compiler

warns us of a potential runtime error ahead of time.

• We can avoid both the warning and the actual non-

exhaustiveness error at runtime by having a “catch-all”

clause:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| otherwise = n * factorial (n - 1)

05.04.2022fmidue.github.io/ProPa-Slides

66

Function definition using guards

• In this specific case, negative inputs would still be a

problem.

• Which we could remedy as follows:

factorial :: Integer -> Integer

factorial n

| n <= 0 = 1

| otherwise = n * factorial (n - 1)

• Some lessons: order matters (and can be exploited),
exhaustiveness matters. Also, some further aspects…

05.04.2022fmidue.github.io/ProPa-Slides

67

Function definition using guards

• The compiler’s checks ahead of time are nice, but
necessarily not perfect.

• For example, it cannot in general detect infinite recursion
ahead of time. (The Halting Problem!)

• Even the “simpler” static exhaustiveness checks are not as
powerful as one might sometimes hope.

• For example, one might hope that something like this:

f x y

| x == y = ...

| x /= y = ...

is statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.

05.04.2022fmidue.github.io/ProPa-Slides

68

Function definition using guards

• Also, the more desirable “fix” to the issue of possible

negative inputs for

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| otherwise = n * factorial (n - 1)

(instead of switching to n <= 0 in the first clause)

would be to statically prevent negative inputs from
occurring at all, via the type system.

• But that is a topic for another lecture.

05.04.2022fmidue.github.io/ProPa-Slides

69

Function definition using guards

• For now, let us apply our insights to this situation
considered earlier:

scene t

| t <= pi = ...

| pi < t && t <= 2 * pi = ...

| 2 * pi < t = ...

• Here is how this should probably look instead:

scene t

| t <= pi = ...

| t <= 2 * pi = ...

| otherwise = ...

05.04.2022fmidue.github.io/ProPa-Slides

70

Function definition using guards

Some further syntactic variations:

factorial :: Integer -> Integer

factorial n | n == 0 = 1

factorial n | otherwise = n * factorial (n - 1)

factorial :: Integer -> Integer

factorial n | n == 0 = 1

factorial n = n * factorial (n - 1)

factorial :: Integer -> Integer

factorial 0 = 1

factorial n = n * factorial (n - 1)

05.04.2022fmidue.github.io/ProPa-Slides

71

Function definition using guards

Another example:

ackermann :: Integer -> Integer -> Integer

ackermann 0 n | n >= 0 = n + 1

ackermann m 0 | m > 0 = ackermann (m - 1) 1

ackermann m n | m > 0 && n > 0

= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness
warnings.

05.04.2022fmidue.github.io/ProPa-Slides

72

Function definitions generally

General rules for function definitions:

• One or more equations, with or without guards.

• One or more arguments; so far, only variable names

(can be anonymous) or constants.

• Uniqueness of variable names within one equation.

• Never expressions, in argument position at definition

sites, that would require computation or “solving”.

05.04.2022fmidue.github.io/ProPa-Slides

73

Function definitions generally

A few more examples:

not :: Bool -> Bool

not True = False

not _ = True

(&&) :: Bool -> Bool -> Bool

True && True = True

_ && _ = False

(&&) :: Bool -> Bool -> Bool

b && True = b

_ && _ = False

05.04.2022fmidue.github.io/ProPa-Slides

Specific observations from exercises

75

Some observations based on exercise submissions

If the Autotool/hlint feedback mentions “eta reduction”, here

is what it means:

• Instead of something like:
ball :: Double -> Picture

ball t = solidCircle t

one might just as well write:
ball :: Double -> Picture

ball = solidCircle

• Also consider:
opening :: Double -> Picture

opening = rectangle 10

05.04.2022fmidue.github.io/ProPa-Slides

76

Some observations based on exercise submissions

Almost every time one sees a use of access-by-index in

Haskell code, it was not the best choice of expression.

A typical case is if something corresponding to this:

whatever [computeFrom argument

| argument <- list]

was instead written like this:

whatever [computeFrom (list !! index)

| index <- [0..(length list - 1)]]

05.04.2022fmidue.github.io/ProPa-Slides

Generally working with lists

78

A few words about lists up front

• We will consider a lot of examples in the lecture and

exercises that deal with lists.

• But that is mostly for didactical reasons. In the “real

world”, there are often more appropriate data

structures (and we will eventually see how to define

them ourselves).

• In part due to historical precedent (Lisp), Haskell has a

very rich library of list processing functions.

• It also has specific syntactical support for lists (e.g.,

list comprehensions).

• As already mentioned, Haskell lists are homogeneous.

05.04.2022fmidue.github.io/ProPa-Slides

79

Examples of existing (first-order) functions on lists

take 3 [1..10] == [1,2,3]

drop 3 [1..10] == [4,5,6,7,8,9,10]

null [] == True

null "abcde" == False

length "abcde" == 5

head "abcde" == 'a'

last "abcde" == 'e'

tail "abcde" == "bcde"

init "abcde" == "abcd"

splitAt 3 "abcde" == ("abc","de")

"abcde" !! 3 == 'd'

reverse "abcde" == "edcba"

"abc" ++ "def" == "abcdef"

zip "abc" "def" == [('a','d'),('b','e'),('c','f')]

concat [[1,2],[],[3]] == [1,2,3]

05.04.2022fmidue.github.io/ProPa-Slides

80

Different ways of working with lists

We now have certain choices, such as whether to work

with recursion or by just combining existing functions

(and possibly list comprehensions).

For example:

isPalindrome :: String -> Bool

isPalindrome s | length s < 2 = True

isPalindrome s = head s == last s &&

isPalindrome (init (tail s))

vs.:

isPalindrome :: String -> Bool

isPalindrome s = reverse s == s

05.04.2022fmidue.github.io/ProPa-Slides

81

Infinite lists

• In Haskell there are even expressions and values for
infinite lists, for example:

[1,3..] ≡ [1,3,5,7,9,...]

[n^2 | n <- [1..]] ≡ [1,4,9,16,...]

• And while we of course cannot print complete such
lists, we can still work normally with them, as long as
the ultimate output is finite:

take 3 [n^2 | n <- [1..]] == [1,4,9]

zip [0..] "ab" == [(0,'a'),(1,'b')]

05.04.2022fmidue.github.io/ProPa-Slides

82

Infinite lists

But there is no mathematical magic at work, so for

example this:

[m | m <- [n^2 | n <- [1..]], m < 100]

will “hang” after producing a finite prefix.

Why is that, actually?

Discussion: involves referential transparency!

05.04.2022fmidue.github.io/ProPa-Slides

83

An interesting function on finite lists

Essentially Quicksort:

sort :: [Integer] -> [Integer]

sort [] = []

sort list =

let

pivot = head list

smaller = [x | x <- tail list, x < pivot]

greater = [x | x <- tail list, x >= pivot]

in sort smaller ++ [pivot] ++ sort greater

05.04.2022fmidue.github.io/ProPa-Slides

“Wholemeal” programming on lists

85

Wholemeal programming

• “Functional languages excel at wholemeal

programming, a term coined by Geraint Jones.

Wholemeal programming means to think big: work with

an entire list, rather than a sequence of elements; …”

Ralf Hinze

• “Wholemeal programming is good for you: it helps to

prevent a disease called indexitis, and encourages

lawful program construction.”

Richard Bird

05.04.2022fmidue.github.io/ProPa-Slides

86

Wholemeal programming on lists

We earlier had this example:

main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• This is already a wholemeal approach, since we express the
application of scene to the elements of [0..5] “in one go”.

• Specifically, we do not conceptually consider “one after another”.

Instead, the resulting values are completely independent, no

individual instance influences any other.

• Just like in the mathematical notation 𝒇(𝒏) 𝒏 ∈ ℕ .

05.04.2022fmidue.github.io/ProPa-Slides

87

Wholemeal programming on lists

We earlier had this example:

main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• Of course, the individual evaluations will, on a sequential machine,

happen in some order. And the resulting list is really a sequence,

not a set. But the individual values will be independent of all that.

• Indeed, one can show that for any f and n, in Haskell:

[f a | a <- [0..n]]

≡ reverse [f a | a <- reverse [0..n]]

05.04.2022fmidue.github.io/ProPa-Slides

88

Contrast to for-loops in Java, C, etc.

• In contrast, it is not remotely true that in an imperative

language we can always replace a piece of code written like

this:
for (a = 0; a <= n; a++)

result[a] = f(a);

by this:
for (a = n; a >= 0; a--)

result[a] = f(a);

• And even for the cases where commands as above are

equivalent, a formulation given that way is less useful than

the Haskell equation we saw, or indeed its more general

version:
reverse [f a | a <- list]

≡ [f a | a <- reverse list]

05.04.2022fmidue.github.io/ProPa-Slides

89

Wholemeal programming on lists

• Another example: Assume we want to multiply each

element of an array or list by its position in that data

structure, and sum up over all the resulting values.

• It seems fair to say that this is a typical solution in C:

int array[n];

int result = 0;

for (int i = 0; i < n; i++)

result = result + i * array[i];

• And that is about okay, but it does suffer from indexitis.

05.04.2022fmidue.github.io/ProPa-Slides

90

Wholemeal programming on lists

• The same example, in a wholemeal fashion, in Haskell:

sum [i * v | (i, v) <- zip [0..] list]

• Nice, short, declarative.

• Of course, one could consider this cheating, because it
is using a conveniently predefined function sum.

• But actually, that is besides the point. Even without that
convenience function, it would not have taken more
than a dozen keystrokes to express the summation.

• And using a convenient array sum function would not
exactly have made the C version any nicer than it is.

05.04.2022fmidue.github.io/ProPa-Slides

91

Wholemeal programming on lists

• So let us discuss the actual issues, expressivity and

susceptibility to change and refactoring.

• Say, what if we decided that the counting of positions

should start at 1 instead of 0?

• In the C version, that could mean we would switch from

this:
for (int i = 0; i < n; i++)

result = result + i * array[i];

to this:

for (int i = 1; i <= n; i++)

result = result + i * array[i-1];

• Indexitis!

05.04.2022fmidue.github.io/ProPa-Slides

92

Wholemeal programming on lists

• In the Haskell version, we simply switch from this:

sum [i * v | (i, v) <- zip [0..] list]

to this:

sum [i * v | (i, v) <- zip [1..] list]

• To be fair again, in C we could have made a different

edit:
for (int i = 0; i < n; i++)

result = result + (i+1) * array[i];

• But actually, that is just indexitis in a different form.

05.04.2022fmidue.github.io/ProPa-Slides

93

Wholemeal programming on lists

• The fundamental issue in the C version is a lack of

conceptual separation of values to enumerate/process

on the one hand, and loop control on the other hand.

• Whereas the Haskell version has that separation in the
zip [k..] ... expression.

• Basically, the Haskell version needs no explicit loop

control, it does not access data structure elements by

index (remember what I said about avoiding use of the
!! operator whenever possible), and it does not need

to increment a loop counter or talk about the “loop

end” condition (because: infinite lists).

05.04.2022fmidue.github.io/ProPa-Slides

94

Wholemeal programming on lists

• Okay, but are we fooling ourselves, efficiency-wise?

• Certainly, code like

for (int i = 0; i < n; i++)

result = result + i * array[i];

is more efficient than

sum [i * v | (i, v) <- zip [0..] list]

because it does not need to use extra memory, and

does not need several data structure traversals?

05.04.2022fmidue.github.io/ProPa-Slides

95

Wholemeal programming on lists

• Well, no. Actually, a compiler can translate the
declarative code into a tight C-like loop, not using an
intermediate data structure, just fine.

• A compiler can even spot parallelization opportunities,
thanks to the “independent values” aspect we already
discussed when comparing list comprehensions
against for-loops.

• That all has to do also with the “lawful program
construction” aspect from the Richard Bird quote.

• We could also talk more about refactoring…

• But is what we saw for the somewhat artificial example
now representative of real situations? Claim: Yes!

05.04.2022fmidue.github.io/ProPa-Slides

Polymorphic types

97

Polymorphic functions on lists

• Remember that each Haskell list is homogeneous, i.e.,

cannot contain elements of different types.
"abc" :: [Char]

[1,2,3] :: [Integer]

['a',2] -- ill-typed

• At the same time, functions and operators on lists can

be used quite flexibly:
reverse "abc" == "cba"

reverse [1,2,3] == [3,2,1]

"abc" ++ "def" == "abcdef"

[1,2] ++ [3,4] == [1,2,3,4]

• We have already depended on this flexibility a lot!

05.04.2022fmidue.github.io/ProPa-Slides

98

Polymorphic functions on lists

• So there should be a way to reconcile the rigidity of
types with flexible use of functions.

• We want to be able to write

"abc" ++ "def" and [1,2] ++ [3,4],

as well as

elem 2 [1,2] and elem 'c' "ab",

but at the same time prevent calls like

"ab" ++ [3,4] and elem 'a' [1,2,3].

05.04.2022fmidue.github.io/ProPa-Slides

99

Polymorphic functions on lists

• So what are the types of functions like those seen?

• We do not have, and clearly do not want, different
functions like reverseChar :: [Char] -> [Char]

and reverseInteger :: [Integer] -> [Integer].

• Instead, we use type variables, as in:

reverse :: [a] -> [a]

• That is not, at all, like being untyped. For example, the
type (++) :: [a] -> [a] -> [a] does not mean

that “anything goes”.
(Still not possible to write this: "ab" ++ [3,4].)

05.04.2022fmidue.github.io/ProPa-Slides

100

Polymorphic functions on lists

• We have already seen a lot of functions that fit this

pattern:
head :: [a] -> a

tail :: [a] -> [a]

last :: [a] -> a

init :: [a] -> [a]

length :: [a] -> Int

null :: [a] -> Bool

concat :: [[a]] -> [a]

• In concrete applications, the type variable gets
instantiated appropriately: head "abc" :: Char.

05.04.2022fmidue.github.io/ProPa-Slides

101

Polymorphic functions on lists

• Of course, a polymorphic function does not need to be

polymorphic in all its arguments.

• For example:

(!!) :: [a] -> Int -> a

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a],[a])

• And what about zip?

05.04.2022fmidue.github.io/ProPa-Slides

102

Polymorphic functions on lists

• The function zip also takes homogeneous lists as

arguments.

• But unlike the case of (++), where we want to allow

"ab" ++ "cd" and [1,2] ++ [3,4], but to disallow

"ab" ++ [3,4], for zip we want to allow all of the

following:
zip "ab" "cd"

zip [1,2] [3,4]

zip "ab" [3,4]

• So the type cannot be like that for (++):

[a] -> [a] -> ...

05.04.2022fmidue.github.io/ProPa-Slides

103

Polymorphic functions on lists

• Instead:
zip :: [a] -> [b] -> [(a,b)]

• Different type variables can be, but do not have to be,

instantiated by different types.

• Hence, all of these make sense:

zip "ab" "cd" -- a = Char, b = Char

zip [1,2] [3,4] -- a = Int, b = Int

zip "ab" [3,4] -- a = Char, b = Int

• Whereas a mixed call for (++) does not:

"ab" ++ [3,4] -- a = Char or Int?

05.04.2022fmidue.github.io/ProPa-Slides

104

Polymorphic functions in other languages

• Have you seen something like those types in another

language before?

• Example in Java with Generics:

<T> List<T> reverse(List<T> list)

{ ... }

corresponding to:

reverse :: [a] -> [a]

reverse list = ...

05.04.2022fmidue.github.io/ProPa-Slides

105

Inference of polymorphic types

• One aspect (among several) that distinguishes

polymorphism in Haskell and its FP predecessors from

those other languages is type inference.

• We need not declare polymorphism, since the compiler

will always infer the most general type automatically.

• For example, for f (x,y) = x the compiler infers

f :: (a,b) -> a.

• And for g (x,y) = if pi > 3 then x else y,

g :: (a,a) -> a.

05.04.2022fmidue.github.io/ProPa-Slides

106

Consequences of polymorphic types

• Polymorphism has really interesting semantic

consequences.

• For example, earlier in the lecture, I mentioned that

always:
reverse [f a | a <- list]

≡ [f a | a <- reverse list]

• What if I told you that this holds, for arbitrary f and

list, not only for reverse, but for any function with

type [a] -> [a], no matter how it is defined?

• Can you give some such functions (and check the

above claim on an intuitive level)?

05.04.2022fmidue.github.io/ProPa-Slides

107

Consequences of polymorphic types

• Recall that the reverse-claim earlier in the lecture

occurred in the context of comparing, in the imperative

world, this:
for (a = 0; a <= n; a++)

result[a] = f(a);

vs. this:
for (a = n; a >= 0; a--)

result[a] = f(a);

• Not only are these two loops not necessarily

equivalent, but even when imposing conditions under

which they are, we do not get an as general and readily

applicable law as just seen in the declarative world.

05.04.2022fmidue.github.io/ProPa-Slides

Higher-order functions

109

Higher-order functions

• So far, we have mainly dealt with first-order functions,

that is, functions that take “normal data” as input

arguments and ultimately return some value.

• But we have also already seen functions to which we

passed other functions as arguments. For example,
quickCheck and animationOf.

• Indeed, let us take a look at the type of the latter:
animationOf :: (Double -> Picture) -> IO ()

• Note: Every function is a (mathematical) value, but not

every value is a function.

05.04.2022fmidue.github.io/ProPa-Slides

110

The types of higher-order functions

• The type

animationOf :: (Double -> Picture) -> IO ()

means something completely different than the type

animationOf :: Double -> Picture -> IO ()

• Indeed, parentheses in such places are very significant.

• Let us discuss this based on a simpler example type.

05.04.2022fmidue.github.io/ProPa-Slides

111

The types of higher-order functions

• What are some functions of the following type?

f :: Int -> Int -> Int

• And what about the following type?

f :: (Int -> Int) -> Int

• What kinds of inputs does either of these take?

• And what can they do with their inputs?

05.04.2022fmidue.github.io/ProPa-Slides

112

The types of higher-order functions

05.04.2022fmidue.github.io/ProPa-Slides

113

Functions to pass to higher-order functions

• Where do we get functions from that we can pass as

arguments to higher-order functions?

• Well, in Haskell functions are almost everywhere, right?

So we should not have any shortage of supply.

• Of course, there are many predefined functions already.

• We could also use functions we have explicitly defined
in our program (such as passing your own scene

function to animationOf).

• Or partial applications of any of those. For example,
(+) :: Int -> Int -> Int, and as a consequence,

(+) 5 :: Int -> Int.

05.04.2022fmidue.github.io/ProPa-Slides

114

Functions to pass to higher-order functions

05.04.2022fmidue.github.io/ProPa-Slides

115

Some syntactic specialties

• Indeed, the type Int -> Int -> Int could be read as

Int -> (Int -> Int).

• But those parentheses can be omitted.

• Two viewpoints here: a function that takes two Int

values and returns one Int value, or a function that

takes one Int value and returns a function that takes

one Int value and returns one Int value.

• Both viewpoints are valid! No difference in usage

(thanks to Haskell’s function application syntax).

• Another syntactic specialty: so-called “sections”.
For example, “(+) 5” can be written as “(5 +)”.

05.04.2022fmidue.github.io/ProPa-Slides

116

Some syntactic specialties

05.04.2022fmidue.github.io/ProPa-Slides

117

Lambda-abstractions

• We can also syntactically create new functions “on the

fly”, instead of predefined or own, explicitly defined

and named, functions already in the program.

• Such anonymous functions use the so-called lambda-

abstraction syntax (which we have already seen in the
context of QuickCheck tests): \x -> x + x

• So, some options of functions we could pass to a
function f :: (Int -> Int) -> Int are:

id, succ, (gregorianMonthLength 2019), (- 5),

(\x -> x + x), (\n -> length [1..n])

05.04.2022fmidue.github.io/ProPa-Slides

118

Lambda-abstractions

• The lambda-abstraction syntax also allows us to get a

clearer view on Haskell’s function definition syntax

(and its choice to be different from standard

mathematical function definition syntax).

• Namely, the following four definitions are equivalent
(each of type add :: Int -> Int -> Int):

add x y = x + y

add x = \y -> x + y

add = \x -> \y -> x + y

add = \x y -> x + y

• With standard mathematical notation, add(x,y) = ,

such variations would not have been so fluent.

05.04.2022fmidue.github.io/ProPa-Slides

119

Usefulness of higher-order functions

• But is any of that really useful to us?

• The examples so far look somewhat esoteric and
artificial, except maybe for the animationOf and

quickCheck “drivers”, which we do not know how to

write ourselves yet though, anyway (due in part to the
involvement of IO).

• Well, there are many immediately useful higher-order

functions on lists as well…

05.04.2022fmidue.github.io/ProPa-Slides

Higher-order functions on lists

121

Higher-order functions on lists

• For example, the function

foldl1 :: (a -> a -> a) -> [a] -> a

puts a (left-associative) function/operator between all
elements of a non-empty list.

• So to compute the sum of such a list:

foldl1 (+) [1,2,3,4]

which will expand to:

1 + 2 + 3 + 4

05.04.2022fmidue.github.io/ProPa-Slides

122

Higher-order functions on lists

• Another useful function:

map :: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

• For example:

map even [1..10]

map (dilated 5) [pic1, pic2, pic3]

05.04.2022fmidue.github.io/ProPa-Slides

123

Higher-order functions on lists

• And another one:

filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain

predicate.

• For example,

filter isPalindrome completeDictionary

filter (> 0.5) bonusPercentageList

05.04.2022fmidue.github.io/ProPa-Slides

124

Relationship to list comprehensions

• While the following are not the actual definitions of map
and filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]

map f list = [f a | a <- list]

filter :: (a -> Bool) -> [a] -> [a]

filter p list = [a | a <- list, p a]

• Conversely, every list comprehension expression, no
matter how complicated with several generators,
guards, etc., can be implemented via map, filter, and
concat.

05.04.2022fmidue.github.io/ProPa-Slides

125

Relationship to list comprehensions

• Is programming with map and filter (and foldl1 and

the like) still “wholemeal programming”, which is what

we have mostly used list comprehensions for so far?

• Yes, absolutely. In a sense even more so, since higher-

order functions provide a further step in the direction

of more abstraction.

• For example, if we want to square some numbers from

a given list, subject to the condition that we are

specifically interested in numbers divisible by four, but

still have to work out whether we want to check this

divisibility before or after squaring, then …

05.04.2022fmidue.github.io/ProPa-Slides

126

Relationship to list comprehensions

… with list comprehensions we would consider, and

maybe experiment with,

[x^2 | x <- list, x `mod` 4 == 0]

vs.

[y | x <- list, let y = x^2, y `mod` 4 == 0]

While with map and filter we would simply decide

between

map (^2) . filter (\x -> x `mod` 4 == 0)

and

filter (\x -> x `mod` 4 == 0) . map (^2)

05.04.2022fmidue.github.io/ProPa-Slides

127

Expressing laws

• Also, a law like (mentioned earlier):

reverse [f a | a <- list]
≡ [f a | a <- reverse list]

can nicely be expressed as:

reverse . map f ≡ map f . reverse

• Then we can also ask under which conditions this holds:

filter p . map f ≡ map f . filter q

• Generally, higher-order functions are a boon for “lawful
program construction” (see the Richard Bird quote).

05.04.2022fmidue.github.io/ProPa-Slides

Algebraic data types

129

Types in Haskell

• We have so far seen various types on which functions
can operate, such as number types (Integer, Float,

…), other base types like Bool and Char, as well as list

and tuple constructions to make compound types,
arbitrarily nested ([…], (…,…)).

• We have also seen that libraries can apparently define
their own, domain specific types, such as Picture.

• To do the same ourselves: algebraic data types.

• These are a more general and more stringent version of

what is usually known as enumeration or union types.

They are also the inspiration for features like Swift’s
(recursive) enum types.

05.04.2022fmidue.github.io/ProPa-Slides

130

Simple enumeration types

• Let us start simple. Assume we want to be able to talk

about days of the week, and compute things like “this

is a workday, yes/no”.

• We could fix some encoding of Monday, Tuesday etc.

as numbers (e.g., Monday = 1, Tuesday = 2, …) and

define functions like:

workday :: Integer -> Bool

workday d = d < 6

• In a sense, we were lucky here that the intended

property corresponds to number ranges 1–5 and 6–7.

05.04.2022fmidue.github.io/ProPa-Slides

131

Simple enumeration types

• So let us try to instead express on which days of the week
there would have been an exercise session in the ProPa
course.

• The answer this time is not a simple arithmetic comparison
like d < 6, but we can for example implement:

exerciseDay :: Integer -> Bool

exerciseDay 3 = False

exerciseDay 6 = False

exerciseDay 7 = False

exerciseDay _ = True

• In either case, what if we call workday or exerciseDay with
an input like 12?

05.04.2022fmidue.github.io/ProPa-Slides

132

Simple enumeration types

• Alternative approach, explicit new values:

data Day
= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

• Now:

exerciseDay :: Day -> Bool
exerciseDay Wednesday = False
exerciseDay Saturday = False
exerciseDay Sunday = False
exerciseDay _ = True

… and it is impossible to pass illegal inputs (like 12th day).

• Terminology: type constructors and data constructors.

05.04.2022fmidue.github.io/ProPa-Slides

133

Simple enumeration types

• In addition to excluding absurd inputs, we get more useful
exhaustiveness (and also redundancy) checking.

• For example, remember the game level example:

level :: (Integer, Integer) -> Integer

aTile :: Integer -> Picture
aTile 1 = block
aTile 2 = water
aTile 3 = pearl
aTile 4 = air
aTile _ = blank

• Imagine that we introduce a new kind of tile, produce its new
“number code” inside the level-function, but forget to also
handle it in the aTile-function. No compiler warning!

05.04.2022fmidue.github.io/ProPa-Slides

134

Simple enumeration types

If we had instead introduced a new type:

data Tile = Blank | Block | Pearl | Water | Air

and used level :: (Integer, Integer) -> Tile

and: aTile :: Tile -> Picture

aTile Blank = blank

aTile Block = block

aTile Pearl = pearl

aTile Water = water

aTile Air = air

then adding another value to data Tile could not go
unnoticed in aTile.

The compiler would actually warn us if we forgot to handle the
new value there!

05.04.2022fmidue.github.io/ProPa-Slides

135

General algebraic data types

• Going beyond simple enumeration types, algebraic data
types can encapsulate additional values in the alternatives.

• That is, the data constructors can take arguments.

• For example:

data Date = Day Integer Integer Integer

data Time = Hour Integer

data Connection = Train Date Time Time

| Flight String Date Time Time

• A possible value of type Connection:

Train (Day 20 04 2011) (Hour 11) (Hour 14)

05.04.2022fmidue.github.io/ProPa-Slides

136

General algebraic data types

• Computation on such types is via pattern-matching:

travelTime :: Connection -> Integer

travelTime (Train _ (Hour d) (Hour a))

= a - d + 1

travelTime (Flight _ _ (Hour d) (Hour a))

= a - d + 2

• At the same time, the data constructors are also normal
functions, for example:

Day :: Integer -> Integer -> Integer -> Date

Train :: Date -> Time -> Time -> Connection

05.04.2022fmidue.github.io/ProPa-Slides

137

Recursive types

• Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

• Values of this type:

Zero, Succ Zero, Succ (Succ Zero), …

• Computation by recursive function definitions:

add :: Nat -> Nat -> Nat

add Zero m = m

add (Succ n) m = Succ (add n m)

05.04.2022fmidue.github.io/ProPa-Slides

138

Recursive types

• With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree

• Values: Leaf, Node Leaf 2 Leaf, …

• Computation:

height :: Tree -> Integer

height Leaf

= 0

height (Node left _ right)

= 1 + max (height left) (height right)

05.04.2022fmidue.github.io/ProPa-Slides

139

Polymorphism in algebraic data types

Just like functions, algebraic data types can be

polymorphic:

data Tree a = Leaf

| Node (Tree a) a (Tree a)

height :: Tree a -> Integer

height Leaf

= 0

height (Node left _ right)

= 1 + max (height left) (height right)

05.04.2022fmidue.github.io/ProPa-Slides

140

Polymorphism in algebraic data types

• Another example, from the standard library:

data Maybe a = Nothing | Just a

• Popular for functions that would otherwise be partial.

• Such as also in a re-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile

aTile :: Tile -> Picture
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air = air

05.04.2022fmidue.github.io/ProPa-Slides

141

Persistency of data structures

• Note that, just as any other data in Haskell, values of
algebraic data types are immutable.

• For example, we do not change any tree in a function like
this:

insert :: Integer -> Tree Integer

-> Tree Integer

insert n Leaf = Node Leaf n Leaf

insert n tree@(Node left m right)

| n < m = Node (insert n left) m right

| n > m = Node left m (insert n right)

| otherwise = tree

• Discuss what this means …

05.04.2022fmidue.github.io/ProPa-Slides

Lists as algebraic data type

143

Another example data structure

• If Haskell did not yet have a list type, we could
implement one ourselves:

data List a = Nil | Cons a (List a)

• Example value: Cons 1 (Cons 2 Nil) :: List Int

• Computation:

length :: List a -> Int

length Nil = 0

length (Cons _ rest) = 1 + length rest

05.04.2022fmidue.github.io/ProPa-Slides

144

Lists as just another algebraic data type

• In fact, modulo special syntax, that is exactly what

Haskell lists are:

data [a] = [] | (:) a [a]

• So, for example, [1,2] is simply 1:(2:[]), which

thanks to right-associativity of “:” can also be written

as 1:2:[].

• Functions on lists can then, of course, also be defined
using pattern-matching.

05.04.2022fmidue.github.io/ProPa-Slides

145

Pattern-matching on lists

Some example functions:

length :: [a] -> Int

length [] = 0

length (_:rest) = 1 + length rest

append :: [a] -> [a] -> [a]

append [] ys = ys

append (x:xs) ys = x : append xs ys

head :: [a] -> a

head (x:_) = x

zip :: [a] -> [b] -> [(a,b)]

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []

05.04.2022fmidue.github.io/ProPa-Slides

146

Pattern-matching on lists

• Note how clever arrangement of cases/equations can

make function definitions more succinct.

• For example, we might on first attempt have defined
zip as follows:

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip (x:xs) [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

• But the version from the previous slide is equivalent.

• Both versions also work with infinite lists, btw.

05.04.2022fmidue.github.io/ProPa-Slides

147

Higher-order examples

Also, as another example of a function we have used:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

And indeed related:

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap _ Leaf = Leaf

treeMap f (Node left x right)

= Node (treeMap f left)

(f x)

(treeMap f right)

05.04.2022fmidue.github.io/ProPa-Slides

148

Higher-order examples

• Also remember the function

foldl1 :: (a -> a -> a) -> [a] -> a

which puts a (left-associative) function/operator
between all elements of a non-empty list.

• It is a member of a whole family of related functions,
the most prominent of which is foldr, defined thus:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ c [] = c

foldr f c (x:xs) = f x (foldr f c xs)

05.04.2022fmidue.github.io/ProPa-Slides

Notes on pattern-matching

150

Evaluation by pattern-matching

• Ultimately, pattern-matching is what drives (lazy)
evaluation in Haskell.

• For example, let us consider how the expression

head (tail (f [3, 3 + 1]))

is evaluated, given the following function definitions
(and the known head and tail functions):

f :: [Int] -> [Int] g :: Int -> Int

f [] = [] g 3 = g 4

f (x:xs) = g x : f xs g n = n + 1

05.04.2022fmidue.github.io/ProPa-Slides

151

Explicit case-expressions

• Pattern-matching is not restricted to the left-hand sides of
function definitions, it can also occur inside expressions,
using the case-keyword.

• For example, instead of something like this:

if maybeThing == Nothing
then … something …
else … something else, using fromJust maybeThing …

we can (and would usually prefer to) write this:

case maybeThing of
Nothing -> … something …
Just thing -> … something else, directly using thing …

05.04.2022fmidue.github.io/ProPa-Slides

152

Binding of variables

• Pattern-matching always binds variable names that occur in

patterns, possibly shadowing existing things of same name.

• That sometimes leads to confusion for beginners, such as

why it does not work to write a function like the following
one (given the existence of red :: Color etc., imported

from CodeWorld):

primaryColor :: Color -> Bool

primaryColor red = True

primaryColor green = True

primaryColor blue = True

primaryColor _ = False

05.04.2022fmidue.github.io/ProPa-Slides

Input / Output

“In short, Haskell is the world’s finest imperative

programming language.”

Simon Peyton Jones

154

Input / Output in Haskell, general approach

• Even in declarative languages, there should be some

(disciplined) way to embed “imperative” commands like

“print something to the screen”.

• In pure functions, no such interaction with the operating

system / user / … is possible.

• And clearly it should not be, since it would defy referential

transparency.

• But there is a special do-notation in Haskell that enables

interaction, and from which one can call “normal” functions.

• All the features and abstraction concepts (higher-order,

polymorphism, …) of Haskell remain available even in and
with do-code.

05.04.2022fmidue.github.io/ProPa-Slides

155

Input / Output in Haskell, very simple example

• Getting two numbers from the user and then printing
some value computed from them to the screen:

main :: IO ()

main = do n <- readLn

m <- readLn

print (prod [n..m])

prod :: [Integer] -> Integer

prod [] = 1

prod (x:xs) = x * prod xs

• Note the (apparent) type inference on n and m.

05.04.2022fmidue.github.io/ProPa-Slides

156

Input / Output in Haskell, the principles

• There is a predefined type constructor IO, such that for

every type like Int, Tree Bool, [(Int,Bool)] etc.,

the type IO Int, IO (Tree Bool), … can be built.

• The interpretation of a type IO a is that elements of

that type are not themselves concrete values, but

instead are (potentially arbitrarily complex) sequences

of input and output operations, and computations

depending on values read in, by which ultimately a
value of type a is created.

• An (independently executable) Haskell program overall
always has an “IO type”, usually main :: IO ().

05.04.2022fmidue.github.io/ProPa-Slides

157

Input / Output in Haskell, the principles

• To actually create “IO values”, there are certain

predefined primitives (and one can recognize their IO-

related character based on their types).

• For example, there are getChar :: IO Char and

putChar :: Char -> IO ().

• Also, for multiple characters, getLine :: IO String

and putStr, putStrLn :: String -> IO ().

• More abstractly, for any type for which Haskell knows

(or was instructed) how to convert from or to strings,
readLn :: Read a => IO a for input as well as

print :: Show a => a -> IO () for output.

05.04.2022fmidue.github.io/ProPa-Slides

158

Input / Output in Haskell, the principles

To combine IO-computations (i.e., to build more complex
action sequences based on the IO primitives), we can use the
do-notation.

Its general form is: do cmd1
x2 <- cmd2
x3 <- cmd3
cmd4
x5 <- cmd5
...

where each cmdi has an IO type and to each xi (if present) a
value of the type encapsulated in the cmdi will be bound (for
use in the rest of the do-block), namely exactly the result of
executing cmdi.

05.04.2022fmidue.github.io/ProPa-Slides

159

Input / Output in Haskell, the principles

• The do-block as a whole has the type of the last cmdn.

• For that last command, generally no xn is present.

• Often also useful (for example, at the end of a do-

block): a predefined function return :: a -> IO a

that simply yields its argument, without any actual IO

action.

• What is never ever, at all, possible or allowed is to

directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the

encapsulated value from an IO computation, i.e., to

simply turn an IO a value into an a value.

05.04.2022fmidue.github.io/ProPa-Slides

160

User defined “control structures”

• As mentioned, also in the context of IO-computations, all
abstraction concepts of Haskell are available, particularly
polymorphism and definition of higher-order functions.

• This can be employed for defining things like:

while :: a -> (a -> Bool) -> (a -> IO a)
-> IO a

while a p body = loop a
where loop x = if p x then do x' <- body x

loop x'
else return x

• Which can then be used thus:

while 0
(< 10)
(\n -> do {print n; return (n+1)})

05.04.2022fmidue.github.io/ProPa-Slides

