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What language did you mainly use in GPT?
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Java Python
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In what language are you most proficient?
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C

Java

other

Python
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What is your favourite programming language?
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C

C#

Java

other

Python



Introduction / Motivation

“To know another language is to have a second soul.” 

Charlemagne, 747/748 – 814
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Many high-level programming languages in existence
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© 2004 O'Reilly Verlag GmbH & Co. KG
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Another perspective
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From “American Scientist”: The Semicolon Wars, © 2006 Brian Hayes
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Also, popularity contests, …
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http://preview.tinyurl.com/popular-languages
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And yet another visualization
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So, why such diversity?

• Can one (or each) language do “more” than others?

• Are there problems that one cannot solve in certain 

languages?

• Is there a “best” language? At least for a certain 

purpose or application area?

• What does actually separate different programming 

languages from each other?
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So, why such diversity?

Some relevant distinctions:

• syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)

• verbosity vs. succinctness (e.g., COBOL vs. Haskell)

• compiled vs. interpreted (e.g., C vs. Perl)

• domain-specific vs. general purpose (e.g., SQL vs. Java)

• sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)

• typed vs. untyped (e.g., Haskell vs. Prolog)

• dynamic vs. static (e.g., Ruby vs. ML)

• declarative vs. imperative (e.g., Prolog vs. C)

• object-oriented vs. ???

• …
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And, yet, there are common principles

Approaches to the specification of programming languages

• … describing syntax,

• … describing semantics,

as well as implementation strategies.

Language concepts:

• variables and bindings

• type constructs

• control structures and abstraction features

And, of course, paradigms that span a whole class of languages.
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A rough plan of the lecture

• We will focus on two paradigms: functional and logic 

programming.

• For each, we pick a specific language: Haskell, Prolog.

• We consider actual programming concepts, and also 

aspects related to semantics (evaluation, resolution).

• With Haskell, we explore typing concepts like 

inference, genericity, polymorphism.

• We discuss and compare concepts like variables, 

expressions vs. commands, etc., in different 

languages.
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Declarative programming

• Functional and logic programming are often called “declarative” or 

“descriptive” programming.

• The idea is that programmers can think more in terms of “What?” 

instead of “How?”, in other words, more in terms of specification 

than planning a certain computation process.

• Of course, there is still a need for algorithmic thinking etc., as 

there is no magic.

• But it is true that declarative programming has a more high-level, 

sometimes mathematical, feel to it.

• Also, the “What-instead-of-How” aspect will become concrete with 

observations like the roles of expressions vs. commands in 

different languages/paradigms.

• A side benefit in declarative languages is often reduced syntax.
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Other reasons for studying “new” paradigms

• Learning different languages now makes it easier to 

pick up new languages later on.

• Concepts from once “exotic” languages make their way 

into “mainstream” ones.

• In some application domains, there is an increased 

demand for very disciplined, conceptually expressive, 

mathematics-based languages.

• Generally, knowing more paradigms increases capacity 

to express ideas.
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Books on Haskell

• Programming in Haskell, 2nd edition; Graham Hutton

• Haskell – The Craft of Functional Programming, 3rd

edition; Simon Thompson

• Thinking Functionally with Haskell; Richard Bird

• Haskell-Intensivkurs; Marco Block, Adrian Neumann

• Einführung in die Programmierung mit Haskell; Manuel 

Chakravarty, Gabriele Keller
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Books on Prolog

• Learn Prolog Now!; Patrick Blackburn, Johan Bos, 

Kristina Striegnitz

• Programmieren in Prolog; William Clocksin, 

Christopher Mellish

• Prolog – Verstehen und Anwenden; Armin Ertl
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A first glimpse of FP with CodeWorld
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A first complete animation program

import CodeWorld

main = animationOf scene

scene t =

circle 8

& colored green (solidRectangle 4 4)

& rotated (pi/2)

(translated 8 0 (colored red (polygon [(0,0),(1,-0.5),(1,0.5)])))

& pictures

[ rotated ((a+t)*pi/20)

(rectangle (4+a) (4+a)) | a <- [ 0, 0.5 .. 9 ] ]
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Expressions vs. commands
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Expression-based programming

• Proposition:

Functional programming is about expressions, 

whereas imperative programming is about commands.

• Some kinds of expressions you (probably) know:

𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐

𝒑 ∧ ¬ 𝒒 ∨ 𝒓

SUMIF(A1:A8,"<0")

• Generally: terms in any algebra, built from constants 

and functions/operators, possibly containing variables
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Properties of (pure) expressions

Expressions

• … are compositional, built completely from 

subexpressions,

• … often have a meaningful type,

• … have a value, which does not depend on “hidden 

influences”, and does not change on re-evaluation or 

based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions 

are built from subexpressions), but extends to typing and 

semantics/evaluation.
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Properties of (pure) expressions

Example 𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐:

The constants are 𝟏, 𝟐, 𝟑 of type ℤ.

The operators are + ∶ ℤ × ℤ → ℤ, ∙ ∶ ℤ × ℤ → ℤ, ()𝟐 ∶ ℤ → ℤ.

The value of 𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐 depends only on the value of 

𝟐 and the value of 𝟑 ∙ (𝒙 + 𝟏)𝟐, the latter only depends on 

the value of 𝟑 and the value of (𝒙 + 𝟏)𝟐, …
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Properties of (pure) expressions

• Thanks to these properties, we can easily use notation 

known from mathematics, for example reformulating 

“𝟐 + 𝟑 ∙ (𝒙 + 𝟏)𝟐” as follows:

“𝟐 + 𝟑 ∙ 𝒚𝟐 where 𝒚 = 𝒙 + 𝟏”.

• Also, we can apply simplifications, for example 

replacing exponentiation by multiplication:

“𝟐 + 𝟑 ∙ 𝒚 ∙ 𝒚 where 𝒚 = 𝒙 + 𝟏”.

• And while this example was about arithmetic 

expressions, the concepts apply much more generally.

• But only if we have pure expressions!
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The situation in imperative programming languages

• So what is different in imperative programming?

• Don’t we also have expressions there?

For example in:

b = 100000;

if (z > 0) {

z = 100 + z;

j = 0;

while (b < 200000) {

b = b * z / 100;

j = j + 1; }

} else j = -1;

• Yes, there are expressions, but they are not the dominating 

syntactical construct. Commands are!
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The situation in imperative programming languages

• Why is this difference relevant? What properties do commands, as 

opposed to expressions, not have?

• Well, for example, they are not even syntactically compositional:

Not every well-formed smaller part of a command is itself a 

command.

while (b < 200000) {

b = b * z / 100;

j = j + 1;

}

• Instead, expressions occur, also keywords, …

• Moreover, commands do not always have a meaningful type.

• Or even just a value. (Try giving a value for the above block.)
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The situation in imperative programming languages

• As a consequence, we cannot name arbitrary well-formed smaller 

parts (as opposed to what we saw for expressions and their 

subexpressions).

• For example, we cannot simply write:

body = {

b = b * z / 100;

j = j + 1;

}

while (b < 200000) body;

• Even workarounds involving functions/procedures/methods are 

not as flexible and useful as the kind of mathematical notation for 

expressions: “𝟐 + 𝟑 ∙ 𝒚𝟐 where 𝒚 = 𝒙 + 𝟏”.
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The situation in imperative programming languages

• Okay, so what about the sublanguage of expressions in an 

imperative language? Can they, at least, be treated as we saw 

before?

• Not in general! For example, we saw that mathematically we 

should be able to rewrite something like “𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ (𝒆𝒙𝒑𝟑)
𝟐” as 

any of:

𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒗𝒂𝒓
𝟐 where 𝒗𝒂𝒓 = 𝒆𝒙𝒑𝟑

𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒗𝒂𝒓 ∙ 𝒗𝒂𝒓 where 𝒗𝒂𝒓 = 𝒆𝒙𝒑𝟑
𝒆𝒙𝒑𝟏 + 𝒆𝒙𝒑𝟐 ∙ 𝒆𝒙𝒑𝟑 ∙ 𝒆𝒙𝒑𝟑

• But code snippets like “result = exp1 + exp2 * (exp3)^2;” 
do not always take well to being replaced by: 

var = exp3; result = exp1 + exp2 * var^2;

• … or by code snippets corresponding to the other expression 

alternatives above.
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The situation in imperative programming languages

• Indeed, consider these four code snippets: 

result = exp1 + exp2 * (exp3)^2;

var = exp3; result = exp1 + exp2 * var^2;

var = exp3; result = exp1 + exp2 * var * var;

result = exp1 + exp2 * exp3 * exp3;

• And imagine instantiations with exp3 being the “expression” i++

or some invocation f() for a procedure/method f.

• The problem is that expressions in an imperative language are 

typically not pure expressions. Instead, they have side-effects!

• (For same reason, re-evaluation of an expression can change the 

value. And order of evaluating subexpressions becomes relevant.)
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So what?

• So, how “bad” is all that?

• Do these artificial examples “prove” anything?

• Well, I haven’t (yet?) really argued that the pure 
expression-based style is better in some sense.

• But what should have become clear is that it is 
different!

• In any case, let us (again) “do” something with 
CodeWorld.    (… also in your first exercise tasks)
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34

Describing a picture via an expression

A rather simple example:

main :: IO ()

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture

triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective …

05.04.2022fmidue.github.io/ProPa-Slides



35

Brief recap from last week

• Expressions: syntactic structures one could imagine 
after the “=” in an assignment “var = …” in C or Java.

• Values: results of evaluating expressions, obtained by 

combining values of subexpressions.

• Commands: syntactic structures that are characterized 

not so much by what (if anything at all) they evaluate 

to, but rather by what effect they have (change of 

storage cells, looping, etc.).

• In a pure setting without commands, any two 

expressions that have the same value can be replaced 

for each other, without changing the behaviour of the 

program.
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Describing a picture via an expression

Observations:

• Compositionality on level of syntax, types, and values.

• Pictures are expressions/values here, can be named etc.

• Functions/operators used:

circle     : ℝ → Picture

polygon    : [ℝ × ℝ ] → Picture

colored    : Color × Picture → Picture

translated : ℝ × ℝ × Picture → Picture

&         : Picture × Picture → Picture

• Properties like: translated a b (colored c d)

≡ colored c (translated a b d)
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Describing an animation via a function

A slight variation of example from last week:

main :: IO ()

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

• Dependence on time expressed via parameter t.

• That parameter is never set by us ourselves for the animation.

• No for-loop or other explicit control.

• Instead, the animationOf construct takes care “somehow”

(this involves evaluating scene for different t).
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Another example

• Mathematically describing dynamic behaviour as a function of 

time should not be much of a surprise.

• A well-known physics example:

𝒙 𝒕 = 𝒗𝟎𝒙 ∙ 𝒕

𝒚 𝒕 = 𝒗𝟎𝒚 ∙ 𝒕 −
𝒈

𝟐
∙ 𝒕𝟐

• As a program:

scene :: Double -> Picture

scene t = cliff & translated x y (circle 0.1)

where x = 3 * t

y = 6 * t - 9.81 / 2 * t^2

cliff = polyline [(-5,0),(0,0),(0,-2)]
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A desire for additional expressivity

• In the examples today, we have already expressed 

continuous distribution, throughout time, via functions.

• What if we also, or alternatively, want a discrete 

distribution, “throughout space”?

• So, instead of one triangle moving in time, we want 

several static triangles at different places.

• But we do not really want to replicate these “by hand”.

• Maybe now is the time for a for-loop?

• No, we don’t have that.

• But what do we have instead?
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One kind of richer expressions: list comprehensions

Using a list comprehension:

main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• With  pictures :: [ Picture ] -> Picture.

• And a list comprehension  [ scene d | d <- [0..5] ].

• This is not exactly like a for-loop, for several reasons.

• Instead, it is like a mathematical set comprehension 𝟐 ∙ 𝒏 𝒏 ∈ ℕ .
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More mundane examples of list comprehensions

> [1,3..10]

[1,3,5,7,9]

> [ x^2 | x <- [1..10], even x ]

[4,16,36,64,100]

> [ y | x <- [1..10], let y = x^2, mod y 4 == 0 ]

[4,16,36,64,100]

> [ x * y | x <- [1,2,3], y <- [1,2,3] ]

[1,2,3,2,4,6,3,6,9]
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More mundane examples of list comprehensions

> [ (x,y) | x <- [1,2,3], y <- [4,5] ]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [ (x,y) | y <- [4,5], x <- [1,2,3] ]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

> [ (x,y) | x <- [1,2,3], y <- [1..x] ]

[(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

> [ x ++ y | (x,y) <- [("a","b"),("c","d")] ]

["ab","cd"]
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So where are we, expressivity-wise?

Some takeaways from examples we have seen:

• Non-constant behaviour expressed as functions, in the 
mathematical sense. 𝒇 𝒙 = ⋯

• Such a description defines the behaviour “as a whole”, not 
in a “piecemeal” fashion.

• For example, there is no “first run this piece of animation, 
then that piece, and then something else”.

• Actually, there is not even a concept of “this piece of 
animation stops at some point”.

Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential 
commands, with imperative keywords or semicolons etc.

List comprehensions are also not the answer, because they do 
not define functions, just (list) values. Instead, …
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Case distinctions

• Switching by conditional expressions:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• This is very much in line with case distinctions in 

mathematical functions:

𝒇 𝒙 = ቊ
−𝒙, 𝒊𝒇 𝒙 < 𝟎
𝒙, 𝒆𝒍𝒔𝒆
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Comparison to the situation in imperative setting

• In C/Java we have two forms of if on commands:

if (...) { ... }

if (...) { ... } else { ... }

• In an expression language, the form without else does not make 

sense, so in Haskell we always have:

if ... then ... else ...

• This corresponds to C/Java’s conditional operator:

... ? ... : ...
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Some usage hints on case distinctions in Haskell

• Pragmatically, an if-then-else expression “without an else” 

would be realized by having some “neutral value” in the else-

branch. Remember:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• Similarly, in a list context:  if condition then list else []

• Also, do not hesitate to use if-then-else as subexpressions 

freely:
f x y (if exp1 then exp2 else exp3)

≡ if exp1 then f x y exp2 else f x y exp3
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“Oddities” of syntax at the type level

Instead of:

circle     : ℝ → Picture

polygon    : [ℝ ×ℝ ] → Picture

colored    : Color × Picture → Picture

translated : ℝ × ℝ × Picture → Picture

&         : Picture × Picture → Picture

type signatures actually look like this:

circle     :: Double -> Picture

polygon    :: [ (Double, Double) ] -> Picture

colored    :: Color -> Picture -> Picture

translated :: Double -> Double -> Picture -> Picture

(&)       :: Picture -> Picture -> Picture
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“Oddities” of syntax at the expression/function level

• Instead of  f(x) and  g(x,y,z), we write  f x and  g x y z.

• As an example for nested function application, instead of  
g(x,f(y),z), we write  g x (f y) z.

• The same syntax is used at function definition sites, so something 

like

float f(int a, char b)

{ ... }

in C or Java would correspond to

f :: Int -> Char -> Float

f a b = ...

in Haskell.
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Layout-sensitivity

In Haskell, this:

let y = a * b

f x = (x + y) / y

in f c + f d

is equivalent to:

let { y = a * b; f x = (x + y) / y }

in f c + f d

But these are not accepted:

let y = a * b let y = a * b

f x = (x + y) / y f x = (x + y) / y

in f c + f d in f c + f d
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Other syntax remarks

• Haskell beginners tend to use unnecessarily many 
brackets. For example, no need to write f (g (x)) or 
(f x) + (g y), since f (g x) and f x + g y

suffice.

• Further brackets can sometimes be saved by using the 
$ operator, for example writing f $ g x $ h y instead 
of f (g x (h y)). I don’t like it in beginners’ code.

• We let Autotool give warnings about redundant 
brackets, as well as about overuse of $.
Sometimes we enforce adherence to those warnings.
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A specific observation based on exercise submissions

If you have repeated occurrences of a common subexpression, 

share them! For example, instead of something like this:

scene t =

if 8 * sin t > 0

then translated (8 * cos t) (8 * sin t) ...

else ...

rather write this:

scene t =

let x = 8 * cos t

y = 8 * sin t

in if y > 0 then translated x y ... else ...
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Specifics about number types

• Haskell has various number types: Int, Integer, 

Float, Double, Rational, …

• Number literals can have a different concrete type 
depending on context, e.g., 3 :: Int, 3 :: Float, 

3.5 :: Float, 3.5 :: Double

• For general expressions there are overloaded 
conversion functions, for example fromIntegral with, 

among others, any of the types Int -> Integer,

Integer -> Int, Int -> Rational, …, and 

truncate, round, ceiling, floor, each with any of 

the types Float -> Int, Double -> Integer, …
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… and arithmetic operators

• Operators are also overloaded, and often no 
conversion is necessary, for example in 3 + 4.5 or 

also in:
f x = 2 * x + 3.5

g y = f 4 / y

• In other cases, conversion is necessary, for example in 

this:
f :: Int -> Float

f x = 2 * fromIntegral x + 3.5

or:
f x = 2 * x + 3.5

g y = f (fromIntegral (length "abcd")) / y
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… and arithmetic operators

• Some operators are available only at certain types, e.g., 
no division symbol “/” on integer types.

• Instead, the function div :: Int -> Int -> Int

(also on Integer).

• Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 `div` 3 instead 

of div 17 3.

• Useful mathematical constants and functions exist, 
e.g., pi, sin, sqrt, min, max, … 
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Some observations based on past years’ exercises

• In case of doubt concerning number conversions, it 
usually does not hurt to add some fromIntegral-

calls, which in the worst case will be no-ops (since, 
among others, fromIntegral :: Int -> Int).

• It is always a good idea to write down type signatures 

for (at least) top-level functions. Among other benefits, 

it saves you from having to deal with (errors involving) 

types like:
fun :: (Floating a, Ord a) => a -> a
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Types beside number types

Other pre-existing types:

• Type Bool, with values True and False and operators 

&&, ||, and not.

• Type Char, with values 'a', 'b', …, '\n' etc., and 

functions succ, pred, as well as comparison operators.

• List types: [Int], [Bool], [[Int]], …, with various 

pre-defined functions and operators. 

• Character sequences: type String = [Char], with 

special notation "abc" instead of ['a','b','c'].

• Tuple types: (Int,Int), (Int,String,Bool), 

((Int,Int),Bool,[Int]), also [(Bool,Int)] etc.
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(more ways of doing it)
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Expressing conditional behaviour

Remember:

• Switching by conditional expressions:

scene :: Double -> Picture

scene t = if t < 3

then translated t t (circle 1)

else blank

• This is very much in line with case distinctions in 
mathematical functions:

𝒇 𝒙 = ቊ
−𝒙, 𝒊𝒇 𝒙 < 𝟎
𝒙, 𝒆𝒍𝒔𝒆
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Expressing conditional behaviour

• Likely not yet seen, function definition using guards:

scene t

| t <= pi               = ...

| pi < t && t <= 2 * pi = ...

| 2 * pi < t            = ...

• This is again similar to mathematical notation:

𝒇 𝒙 = ቐ

𝟎, 𝒊𝒇 𝒙 ≤ 𝟎
𝒙, 𝒊𝒇 𝟎 < 𝒙 ≤ 𝟏
𝟏, 𝒊𝒇 𝒙 > 𝟏
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Function definition using guards

• Let us discuss some details based on this example:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| n > 0 = n * factorial (n - 1)

• First of all, what about the order of clauses?

• Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer

factorial n

| n > 0 = n * factorial (n - 1)

| n == 0 = 1
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Function definition using guards

• What if the guard conditions overlap?

• Then this is okay:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

but this is problematic:

factorial :: Integer -> Integer
factorial n

| n >= 0 = n * factorial (n - 1)
| n == 0 = 1

• Always the first matching clause is used!
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Function definition using guards

• Even with the “correct” order:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| n >= 0 = n * factorial (n - 1)

we can have problems with some inputs.

• If no clause matches, we get a runtime error!
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Function definition using guards

• In fact, if called with appropriate settings, the compiler 

warns us of a potential runtime error ahead of time.

• We can avoid both the warning and the actual non-

exhaustiveness error at runtime by having a “catch-all” 

clause:

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| otherwise = n * factorial (n - 1)
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Function definition using guards

• In this specific case, negative inputs would still be a 

problem.

• Which we could remedy as follows:

factorial :: Integer -> Integer

factorial n

| n <= 0 = 1

| otherwise = n * factorial (n - 1)

• Some lessons: order matters (and can be exploited), 
exhaustiveness matters. Also, some further aspects…
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Function definition using guards

• The compiler’s checks ahead of time are nice, but 
necessarily not perfect.

• For example, it cannot in general detect infinite recursion 
ahead of time. (The Halting Problem!)

• Even the “simpler” static exhaustiveness checks are not as 
powerful as one might sometimes hope.

• For example, one might hope that something like this:

f x y

| x == y = ...

| x /= y = ...

is statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.
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Function definition using guards

• Also, the more desirable “fix” to the issue of possible 

negative inputs for

factorial :: Integer -> Integer

factorial n

| n == 0 = 1

| otherwise = n * factorial (n - 1)

(instead of switching to n <= 0 in the first clause) 

would be to statically prevent negative inputs from 
occurring at all, via the type system.

• But that is a topic for another lecture.
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Function definition using guards

• For now, let us apply our insights to this situation 
considered earlier:

scene t

| t <= pi               = ...

| pi < t && t <= 2 * pi = ...

| 2 * pi < t            = ...

• Here is how this should probably look instead:

scene t

| t <= pi     = ...

| t <= 2 * pi = ...

| otherwise   = ...
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Function definition using guards

Some further syntactic variations:

factorial :: Integer -> Integer

factorial n | n == 0 = 1

factorial n | otherwise = n * factorial (n - 1)

factorial :: Integer -> Integer

factorial n | n == 0 = 1

factorial n          = n * factorial (n - 1)

factorial :: Integer -> Integer

factorial 0 = 1

factorial n = n * factorial (n - 1)
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Function definition using guards

Another example:

ackermann :: Integer -> Integer -> Integer

ackermann 0 n | n >= 0 = n + 1

ackermann m 0 | m > 0 = ackermann (m - 1) 1

ackermann m n | m > 0 && n > 0

= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness 
warnings.
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Function definitions generally

General rules for function definitions:

• One or more equations, with or without guards.

• One or more arguments; so far, only variable names 

(can be anonymous) or constants.

• Uniqueness of variable names within one equation.

• Never expressions, in argument position at definition 

sites, that would require computation or “solving”.
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Function definitions generally

A few more examples:

not :: Bool -> Bool

not True = False

not _ = True

(&&) :: Bool -> Bool -> Bool

True && True = True

_ && _ = False

(&&) :: Bool -> Bool -> Bool

b && True = b

_ && _ = False
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Some observations based on exercise submissions

If the Autotool/hlint feedback mentions “eta reduction”, here 

is what it means:

• Instead of something like:
ball :: Double -> Picture

ball t = solidCircle t

one might just as well write:
ball :: Double -> Picture

ball = solidCircle

• Also consider:
opening :: Double -> Picture

opening = rectangle 10
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Some observations based on exercise submissions

Almost every time one sees a use of access-by-index in 

Haskell code, it was not the best choice of expression.

A typical case is if something corresponding to this:

whatever [ computeFrom argument

| argument <- list ]

was instead written like this:

whatever [ computeFrom (list !! index)

| index <- [0..(length list - 1)] ]

05.04.2022fmidue.github.io/ProPa-Slides



Generally working with lists



78

A few words about lists up front

• We will consider a lot of examples in the lecture and 

exercises that deal with lists.

• But that is mostly for didactical reasons. In the “real 

world”, there are often more appropriate data 

structures (and we will eventually see how to define 

them ourselves).

• In part due to historical precedent (Lisp), Haskell has a 

very rich library of list processing functions.

• It also has specific syntactical support for lists (e.g., 

list comprehensions).

• As already mentioned, Haskell lists are homogeneous.

05.04.2022fmidue.github.io/ProPa-Slides



79

Examples of existing (first-order) functions on lists

take 3 [1..10] == [1,2,3]

drop 3 [1..10] == [4,5,6,7,8,9,10]

null [] == True

null "abcde" == False

length "abcde" == 5

head "abcde" == 'a'

last "abcde" == 'e'

tail "abcde" == "bcde"

init "abcde" == "abcd"

splitAt 3 "abcde" == ("abc","de")

"abcde" !! 3 == 'd'

reverse "abcde" == "edcba"

"abc" ++ "def" == "abcdef"

zip "abc" "def" == [('a','d'),('b','e'),('c','f')]

concat [[1,2],[],[3]] == [1,2,3]
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Different ways of working with lists

We now have certain choices, such as whether to work 

with recursion or by just combining existing functions 

(and possibly list comprehensions).

For example:

isPalindrome :: String -> Bool

isPalindrome s | length s < 2 = True

isPalindrome s = head s == last s &&

isPalindrome (init (tail s))

vs.:

isPalindrome :: String -> Bool

isPalindrome s = reverse s == s

05.04.2022fmidue.github.io/ProPa-Slides



81

Infinite lists

• In Haskell there are even expressions and values for 
infinite lists, for example:

[1,3..] ≡ [1,3,5,7,9,...]

[ n^2 | n <- [1..] ] ≡ [1,4,9,16,...]

• And while we of course cannot print complete such 
lists, we can still work normally with them, as long as 
the ultimate output is finite:

take 3 [ n^2 | n <- [1..] ] == [1,4,9]

zip [0..] "ab" == [(0,'a'),(1,'b')]
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Infinite lists

But there is no mathematical magic at work, so for 

example this:

[ m | m <- [ n^2 | n <- [1..] ], m < 100 ]

will “hang” after producing a finite prefix.

Why is that, actually?

Discussion: involves referential transparency!
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An interesting function on finite lists

Essentially Quicksort:

sort :: [Integer] -> [Integer]

sort [] = []

sort list =

let

pivot = head list

smaller = [ x | x <- tail list, x < pivot ]

greater = [ x | x <- tail list, x >= pivot ]

in sort smaller ++ [ pivot ] ++ sort greater
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Wholemeal programming

• “Functional languages excel at wholemeal 

programming, a term coined by Geraint Jones. 

Wholemeal programming means to think big: work with 

an entire list, rather than a sequence of elements; …”

Ralf Hinze

• “Wholemeal programming is good for you: it helps to 

prevent a disease called indexitis, and encourages 

lawful program construction.”

Richard Bird
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Wholemeal programming on lists

We earlier had this example:

main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• This is already a wholemeal approach, since we express the 
application of scene to the elements of [0..5] “in one go”.

• Specifically, we do not conceptually consider “one after another”. 

Instead, the resulting values are completely independent, no 

individual instance influences any other.

• Just like in the mathematical notation 𝒇(𝒏) 𝒏 ∈ ℕ .
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Wholemeal programming on lists

We earlier had this example:

main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• Of course, the individual evaluations will, on a sequential machine, 

happen in some order. And the resulting list is really a sequence, 

not a set. But the individual values will be independent of all that.

• Indeed, one can show that for any f and n, in Haskell:

[ f a | a <- [0..n] ]

≡ reverse [ f a | a <- reverse [0..n] ]
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Contrast to for-loops in Java, C, etc.

• In contrast, it is not remotely true that in an imperative 

language we can always replace a piece of code written like 

this:
for (a = 0; a <= n; a++)

result[a] = f(a);

by this:
for (a = n; a >= 0; a--)

result[a] = f(a);

• And even for the cases where commands as above are

equivalent, a formulation given that way is less useful than 

the Haskell equation we saw, or indeed its more general 

version:
reverse [ f a | a <- list ]

≡ [ f a | a <- reverse list ]
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Wholemeal programming on lists

• Another example: Assume we want to multiply each 

element of an array or list by its position in that data 

structure, and sum up over all the resulting values.

• It seems fair to say that this is a typical solution in C:

int array[n];

int result = 0;

for (int i = 0; i < n; i++)

result = result + i * array[i];

• And that is about okay, but it does suffer from indexitis.
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Wholemeal programming on lists

• The same example, in a wholemeal fashion, in Haskell:

sum [ i * v | (i, v) <- zip [0..] list ]

• Nice, short, declarative.

• Of course, one could consider this cheating, because it 
is using a conveniently predefined function sum.

• But actually, that is besides the point. Even without that 
convenience function, it would not have taken more 
than a dozen keystrokes to express the summation.

• And using a convenient array sum function would not 
exactly have made the C version any nicer than it is.
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Wholemeal programming on lists

• So let us discuss the actual issues, expressivity and 

susceptibility to change and refactoring.

• Say, what if we decided that the counting of positions 

should start at 1 instead of 0?

• In the C version, that could mean we would switch from 

this:
for (int i = 0; i < n; i++)

result = result + i * array[i];

to this:

for (int i = 1; i <= n; i++)

result = result + i * array[i-1];

• Indexitis!
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Wholemeal programming on lists

• In the Haskell version, we simply switch from this:

sum [ i * v | (i, v) <- zip [0..] list ]

to this:

sum [ i * v | (i, v) <- zip [1..] list ]

• To be fair again, in C we could have made a different 

edit:
for (int i = 0; i < n; i++)

result = result + (i+1) * array[i];

• But actually, that is just indexitis in a different form.
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Wholemeal programming on lists

• The fundamental issue in the C version is a lack of 

conceptual separation of values to enumerate/process 

on the one hand, and loop control on the other hand.

• Whereas the Haskell version has that separation in the 
zip [k..] ... expression.

• Basically, the Haskell version needs no explicit loop 

control, it does not access data structure elements by 

index (remember what I said about avoiding use of the 
!! operator whenever possible), and it does not need 

to increment a loop counter or talk about the “loop 

end” condition (because: infinite lists).
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Wholemeal programming on lists

• Okay, but are we fooling ourselves, efficiency-wise?

• Certainly, code like

for (int i = 0; i < n; i++)

result = result + i * array[i];

is more efficient than

sum [ i * v | (i, v) <- zip [0..] list ]

because it does not need to use extra memory, and 

does not need several data structure traversals?
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Wholemeal programming on lists

• Well, no. Actually, a compiler can translate the 
declarative code into a tight C-like loop, not using an 
intermediate data structure, just fine.

• A compiler can even spot parallelization opportunities, 
thanks to the “independent values” aspect we already 
discussed when comparing list comprehensions 
against for-loops.

• That all has to do also with the “lawful program 
construction” aspect from the Richard Bird quote.

• We could also talk more about refactoring…

• But is what we saw for the somewhat artificial example 
now representative of real situations? Claim: Yes!
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Polymorphic functions on lists

• Remember that each Haskell list is homogeneous, i.e., 

cannot contain elements of different types.
"abc"   :: [Char]

[1,2,3] :: [Integer]

['a',2] -- ill-typed

• At the same time, functions and operators on lists can 

be used quite flexibly:
reverse "abc" == "cba"

reverse [1,2,3] == [3,2,1]

"abc" ++ "def" == "abcdef"

[1,2] ++ [3,4] == [1,2,3,4]

• We have already depended on this flexibility a lot!
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Polymorphic functions on lists

• So there should be a way to reconcile the rigidity of 
types with flexible use of functions.

• We want to be able to write

"abc" ++ "def" and [1,2] ++ [3,4],

as well as

elem 2 [1,2] and elem 'c' "ab",

but at the same time prevent calls like

"ab" ++ [3,4] and elem 'a' [1,2,3].
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Polymorphic functions on lists

• So what are the types of functions like those seen?

• We do not have, and clearly do not want, different 
functions like reverseChar :: [Char] -> [Char]

and reverseInteger :: [Integer] -> [Integer].

• Instead, we use type variables, as in:

reverse :: [a] -> [a]

• That is not, at all, like being untyped. For example, the 
type (++) :: [a] -> [a] -> [a] does not mean 

that “anything goes”.
(Still not possible to write this: "ab" ++ [3,4].)
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Polymorphic functions on lists

• We have already seen a lot of functions that fit this 

pattern:
head   :: [a] -> a

tail   :: [a] -> [a]

last   :: [a] -> a

init :: [a] -> [a]

length :: [a] -> Int

null   :: [a] -> Bool

concat :: [[a]] -> [a]

• In concrete applications, the type variable gets 
instantiated appropriately:  head "abc" :: Char. 
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Polymorphic functions on lists

• Of course, a polymorphic function does not need to be 

polymorphic in all its arguments.

• For example:

(!!) :: [a] -> Int -> a

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a],[a])

• And what about zip?
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Polymorphic functions on lists

• The function zip also takes homogeneous lists as 

arguments.

• But unlike the case of (++), where we want to allow 

"ab" ++ "cd" and [1,2] ++ [3,4], but to disallow 

"ab" ++ [3,4], for zip we want to allow all of the 

following:
zip "ab" "cd"

zip [1,2] [3,4]

zip "ab" [3,4]

• So the type cannot be like that for (++):

[a] -> [a] -> ...
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Polymorphic functions on lists

• Instead:
zip :: [a] -> [b] -> [(a,b)]

• Different type variables can be, but do not have to be, 

instantiated by different types.

• Hence, all of these make sense:

zip "ab" "cd" -- a = Char, b = Char

zip [1,2] [3,4] -- a = Int, b = Int

zip "ab" [3,4] -- a = Char, b = Int

• Whereas a mixed call for (++) does not:

"ab" ++ [3,4] -- a = Char or Int?
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Polymorphic functions in other languages

• Have you seen something like those types in another 

language before?

• Example in Java with Generics:

<T> List<T> reverse(List<T> list)

{ ... }

corresponding to:

reverse :: [a] -> [a]

reverse list = ...
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Inference of polymorphic types

• One aspect (among several) that distinguishes 

polymorphism in Haskell and its FP predecessors from 

those other languages is type inference.

• We need not declare polymorphism, since the compiler 

will always infer the most general type automatically.

• For example, for f (x,y) = x the compiler infers

f :: (a,b) -> a.

• And for g (x,y) = if pi > 3 then x else y,

g :: (a,a) -> a.
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Consequences of polymorphic types

• Polymorphism has really interesting semantic 

consequences.

• For example, earlier in the lecture, I mentioned that 

always:
reverse [ f a | a <- list ]

≡ [ f a | a <- reverse list ]

• What if I told you that this holds, for arbitrary f and 

list, not only for reverse, but for any function with 

type [a] -> [a], no matter how it is defined?

• Can you give some such functions (and check the 

above claim on an intuitive level)?
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Consequences of polymorphic types

• Recall that the reverse-claim earlier in the lecture 

occurred in the context of comparing, in the imperative 

world, this:
for (a = 0; a <= n; a++)

result[a] = f(a);

vs. this:
for (a = n; a >= 0; a--)

result[a] = f(a);

• Not only are these two loops not necessarily 

equivalent, but even when imposing conditions under 

which they are, we do not get an as general and readily 

applicable law as just seen in the declarative world.
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Higher-order functions

• So far, we have mainly dealt with first-order functions, 

that is, functions that take “normal data” as input 

arguments and ultimately return some value.

• But we have also already seen functions to which we 

passed other functions as arguments. For example, 
quickCheck and animationOf.

• Indeed, let us take a look at the type of the latter:
animationOf :: (Double -> Picture) -> IO ()

• Note: Every function is a (mathematical) value, but not 

every value is a function.
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The types of higher-order functions

• The type

animationOf :: (Double -> Picture) -> IO ()

means something completely different than the type

animationOf :: Double -> Picture -> IO ()

• Indeed, parentheses in such places are very significant.

• Let us discuss this based on a simpler example type.
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The types of higher-order functions

• What are some functions of the following type?

f :: Int -> Int -> Int

• And what about the following type?

f :: (Int -> Int) -> Int

• What kinds of inputs does either of these take?

• And what can they do with their inputs?
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The types of higher-order functions
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Functions to pass to higher-order functions

• Where do we get functions from that we can pass as 

arguments to higher-order functions?

• Well, in Haskell functions are almost everywhere, right? 

So we should not have any shortage of supply.

• Of course, there are many predefined functions already.

• We could also use functions we have explicitly defined 
in our program (such as passing your own scene

function to animationOf).

• Or partial applications of any of those. For example, 
(+) :: Int -> Int -> Int, and as a consequence, 

(+) 5 :: Int -> Int.
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Functions to pass to higher-order functions
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Some syntactic specialties

• Indeed, the type Int -> Int -> Int could be read as 

Int -> (Int -> Int).

• But those parentheses can be omitted.

• Two viewpoints here: a function that takes two Int

values and returns one Int value, or a function that 

takes one Int value and returns a function that takes 

one Int value and returns one Int value.

• Both viewpoints are valid! No difference in usage 

(thanks to Haskell’s function application syntax).

• Another syntactic specialty: so-called “sections”.
For example, “(+) 5” can be written as “(5 +)”.
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Some syntactic specialties
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Lambda-abstractions

• We can also syntactically create new functions “on the 

fly”, instead of predefined or own, explicitly defined 

and named, functions already in the program.

• Such anonymous functions use the so-called lambda-

abstraction syntax (which we have already seen in the 
context of QuickCheck tests): \x -> x + x

• So, some options of functions we could pass to a 
function f :: (Int -> Int) -> Int are:

id, succ, (gregorianMonthLength 2019), (- 5),

(\x -> x + x), (\n -> length [1..n])
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Lambda-abstractions

• The lambda-abstraction syntax also allows us to get a 

clearer view on Haskell’s function definition syntax 

(and its choice to be different from standard 

mathematical function definition syntax).

• Namely, the following four definitions are equivalent 
(each of type add :: Int -> Int -> Int):

add x y = x + y

add x = \y -> x + y

add = \x -> \y -> x + y

add = \x y -> x + y

• With standard mathematical notation, add(x,y) = , 

such variations would not have been so fluent.
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Usefulness of higher-order functions

• But is any of that really useful to us?

• The examples so far look somewhat esoteric and 
artificial, except maybe for the animationOf and  

quickCheck “drivers”, which we do not know how to 

write ourselves yet though, anyway (due in part to the 
involvement of IO).

• Well, there are many immediately useful higher-order 

functions on lists as well…
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Higher-order functions on lists

• For example, the function

foldl1 :: (a -> a -> a) -> [a] -> a

puts a (left-associative) function/operator between all 
elements of a non-empty list.

• So to compute the sum of such a list:

foldl1 (+) [1,2,3,4]

which will expand to:

1 + 2 + 3 + 4
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Higher-order functions on lists

• Another useful function:

map :: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

• For example:

map even [1..10]

map (dilated 5) [ pic1, pic2, pic3 ]
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Higher-order functions on lists

• And another one:

filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain 

predicate.

• For example,

filter isPalindrome completeDictionary

filter (> 0.5) bonusPercentageList
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Relationship to list comprehensions

• While the following are not the actual definitions of map
and filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]

map f list = [ f a | a <- list ]

filter :: (a -> Bool) -> [a] -> [a]

filter p list = [ a | a <- list, p a ]

• Conversely, every list comprehension expression, no 
matter how complicated with several generators, 
guards, etc., can be implemented via map, filter, and 
concat.
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Relationship to list comprehensions

• Is programming with map and filter (and foldl1 and 

the like) still “wholemeal programming”, which is what 

we have mostly used list comprehensions for so far?

• Yes, absolutely. In a sense even more so, since higher-

order functions provide a further step in the direction 

of more abstraction.

• For example, if we want to square some numbers from 

a given list, subject to the condition that we are 

specifically interested in numbers divisible by four, but 

still have to work out whether we want to check this 

divisibility before or after squaring, then …
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Relationship to list comprehensions

… with list comprehensions we would consider, and 

maybe experiment with,

[ x^2 | x <- list, x `mod` 4 == 0 ]

vs.

[ y | x <- list, let y = x^2, y `mod` 4 == 0 ]

While with map and filter we would simply decide 

between

map (^2) . filter (\x -> x `mod` 4 == 0)

and

filter (\x -> x `mod` 4 == 0) . map (^2)
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Expressing laws

• Also, a law like (mentioned earlier):

reverse [ f a | a <- list ]
≡ [ f a | a <- reverse list ]

can nicely be expressed as:

reverse . map f ≡ map f . reverse

• Then we can also ask under which conditions this holds:

filter p . map f ≡ map f . filter q

• Generally, higher-order functions are a boon for “lawful 
program construction” (see the Richard Bird quote).
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Types in Haskell

• We have so far seen various types on which functions 
can operate, such as number types (Integer, Float, 

…), other base types like Bool and Char, as well as list 

and tuple constructions to make compound types, 
arbitrarily nested ([…], (…,…)).

• We have also seen that libraries can apparently define 
their own, domain specific types, such as Picture.

• To do the same ourselves: algebraic data types.

• These are a more general and more stringent version of 

what is usually known as enumeration or union types. 

They are also the inspiration for features like Swift’s 
(recursive) enum types.
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Simple enumeration types

• Let us start simple. Assume we want to be able to talk 

about days of the week, and compute things like “this 

is a workday, yes/no”.

• We could fix some encoding of Monday, Tuesday etc. 

as numbers (e.g., Monday = 1, Tuesday = 2, …) and 

define functions like:

workday :: Integer -> Bool

workday d = d < 6

• In a sense, we were lucky here that the intended 

property corresponds to number ranges 1–5  and 6–7.
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Simple enumeration types

• So let us try to instead express on which days of the week 
there would have been an exercise session in the ProPa
course.

• The answer this time is not a simple arithmetic comparison 
like d < 6, but we can for example implement:

exerciseDay :: Integer -> Bool

exerciseDay 3 = False

exerciseDay 6 = False

exerciseDay 7 = False

exerciseDay _ = True

• In either case, what if we call workday or exerciseDay with 
an input like 12?
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Simple enumeration types

• Alternative approach, explicit new values:

data Day
= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

• Now:

exerciseDay :: Day -> Bool
exerciseDay Wednesday = False
exerciseDay Saturday  = False
exerciseDay Sunday    = False
exerciseDay _ = True

… and it is impossible to pass illegal inputs (like 12th day).

• Terminology: type constructors and data constructors.
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Simple enumeration types

• In addition to excluding absurd inputs, we get more useful 
exhaustiveness (and also redundancy) checking.

• For example, remember the game level example:

level :: (Integer, Integer) -> Integer

aTile :: Integer -> Picture
aTile 1 = block
aTile 2 = water
aTile 3 = pearl
aTile 4 = air
aTile _ = blank

• Imagine that we introduce a new kind of tile, produce its new 
“number code” inside the level-function, but forget to also 
handle it in the aTile-function. No compiler warning!
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Simple enumeration types

If we had instead introduced a new type:

data Tile = Blank | Block | Pearl | Water | Air

and used level :: (Integer, Integer) -> Tile

and: aTile :: Tile -> Picture

aTile Blank = blank

aTile Block = block

aTile Pearl = pearl

aTile Water = water

aTile Air   = air

then adding another value to data Tile could not go 
unnoticed in aTile.

The compiler would actually warn us if we forgot to handle the 
new value there!
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General algebraic data types

• Going beyond simple enumeration types, algebraic data 
types can encapsulate additional values in the alternatives.

• That is, the data constructors can take arguments.

• For example:

data Date = Day Integer Integer Integer

data Time = Hour Integer

data Connection = Train Date Time Time

| Flight String Date Time Time

• A possible value of type Connection:

Train (Day 20 04 2011) (Hour 11) (Hour 14)
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General algebraic data types

• Computation on such types is via pattern-matching:

travelTime :: Connection -> Integer

travelTime (Train _ (Hour d) (Hour a))

= a - d + 1

travelTime (Flight _ _ (Hour d) (Hour a))

= a - d + 2

• At the same time, the data constructors are also normal 
functions, for example:

Day :: Integer -> Integer -> Integer -> Date

Train :: Date -> Time -> Time -> Connection
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Recursive types

• Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

• Values of this type:

Zero, Succ Zero, Succ (Succ Zero), …

• Computation by recursive function definitions:

add :: Nat -> Nat -> Nat

add Zero     m = m

add (Succ n) m = Succ (add n m)
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Recursive types

• With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree

• Values: Leaf, Node Leaf 2 Leaf, …

• Computation:

height :: Tree -> Integer

height Leaf

= 0

height (Node left _ right)

= 1 + max (height left) (height right)
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Polymorphism in algebraic data types

Just like functions, algebraic data types can be 

polymorphic:

data Tree a = Leaf

| Node (Tree a) a (Tree a)

height :: Tree a -> Integer

height Leaf

= 0

height (Node left _ right)

= 1 + max (height left) (height right)
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Polymorphism in algebraic data types

• Another example, from the standard library:

data Maybe a = Nothing | Just a

• Popular for functions that would otherwise be partial.

• Such as also in a re-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile

aTile :: Tile -> Picture
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air   = air
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Persistency of data structures

• Note that, just as any other data in Haskell, values of 
algebraic data types are immutable.

• For example, we do not change any tree in a function like 
this:

insert :: Integer -> Tree Integer

-> Tree Integer

insert n Leaf = Node Leaf n Leaf

insert n tree@(Node left m right)

| n < m = Node (insert n left) m right

| n > m = Node left m (insert n right)

| otherwise = tree

• Discuss what this means …
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Another example data structure

• If Haskell did not yet have a list type, we could 
implement one ourselves:

data List a = Nil | Cons a (List a)

• Example value: Cons 1 (Cons 2 Nil) :: List Int

• Computation:

length :: List a -> Int

length Nil           = 0

length (Cons _ rest) = 1 + length rest
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Lists as just another algebraic data type

• In fact, modulo special syntax, that is exactly what 

Haskell lists are:

data [a] = [] | (:) a [a]

• So, for example, [1,2] is simply 1:(2:[]), which 

thanks to right-associativity of “:” can also be written 

as 1:2:[].

• Functions on lists can then, of course, also be defined 
using pattern-matching.
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Pattern-matching on lists

Some example functions:

length :: [a] -> Int

length [] = 0

length (_:rest) = 1 + length rest

append :: [a] -> [a] -> [a]

append [] ys = ys

append (x:xs) ys = x : append xs ys

head :: [a] -> a

head (x:_) = x

zip :: [a] -> [b] -> [(a,b)]

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []
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Pattern-matching on lists

• Note how clever arrangement of cases/equations can 

make function definitions more succinct.

• For example, we might on first attempt have defined 
zip as follows:

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip (x:xs) [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

• But the version from the previous slide is equivalent.

• Both versions also work with infinite lists, btw.
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Higher-order examples

Also, as another example of a function we have used:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

And indeed related:

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap _ Leaf = Leaf

treeMap f (Node left x right)

= Node (treeMap f left)

(f x)

(treeMap f right)
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Higher-order examples

• Also remember the function

foldl1 :: (a -> a -> a) -> [a] -> a

which puts a (left-associative) function/operator 
between all elements of a non-empty list.

• It is a member of a whole family of related functions, 
the most prominent of which is foldr, defined thus:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ c [] = c

foldr f c (x:xs) = f x (foldr f c xs)
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Evaluation by pattern-matching

• Ultimately, pattern-matching is what drives (lazy) 
evaluation in Haskell.

• For example, let us consider how the expression

head (tail (f [3, 3 + 1]))

is evaluated, given the following function definitions 
(and the known head and tail functions):

f :: [Int] -> [Int] g :: Int -> Int

f [] = [] g 3 = g 4

f (x:xs) = g x : f xs g n = n + 1
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Explicit case-expressions

• Pattern-matching is not restricted to the left-hand sides of 
function definitions, it can also occur inside expressions, 
using the case-keyword.

• For example, instead of something like this:

if maybeThing == Nothing
then … something …
else … something else, using fromJust maybeThing …

we can (and would usually prefer to) write this:

case maybeThing of
Nothing    -> … something …
Just thing -> … something else, directly using thing …
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Binding of variables

• Pattern-matching always binds variable names that occur in 

patterns, possibly shadowing existing things of same name.

• That sometimes leads to confusion for beginners, such as 

why it does not work to write a function like the following 
one (given the existence of red :: Color etc., imported 

from CodeWorld):

primaryColor :: Color -> Bool

primaryColor red   = True

primaryColor green = True

primaryColor blue  = True

primaryColor _ = False
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Input / Output

“In short, Haskell is the world’s finest imperative 

programming language.” 

Simon Peyton Jones
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Input / Output in Haskell, general approach

• Even in declarative languages, there should be some 

(disciplined) way to embed “imperative” commands like 

“print something to the screen”.

• In pure functions, no such interaction with the operating 

system / user / … is possible.

• And clearly it should not be, since it would defy referential 

transparency.

• But there is a special do-notation in Haskell that enables 

interaction, and from which one can call “normal” functions.

• All the features and abstraction concepts (higher-order, 

polymorphism, …) of Haskell remain available even in and 
with do-code.
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Input / Output in Haskell, very simple example

• Getting two numbers from the user and then printing 
some value computed from them to the screen:

main :: IO ()

main = do n <- readLn

m <- readLn

print (prod [n..m])

prod :: [Integer] -> Integer

prod [] = 1

prod (x:xs) = x * prod xs

• Note the (apparent) type inference on n and m.
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Input / Output in Haskell, the principles

• There is a predefined type constructor IO, such that for 

every type like Int, Tree Bool, [(Int,Bool)] etc., 

the type IO Int, IO (Tree Bool), … can be built.

• The interpretation of a type IO a is that elements of 

that type are not themselves concrete values, but 

instead are (potentially arbitrarily complex) sequences 

of input and output operations, and computations 

depending on values read in, by which ultimately a 
value of type a is created.

• An (independently executable) Haskell program overall 
always has an “IO type”, usually main :: IO ().
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Input / Output in Haskell, the principles

• To actually create “IO values”, there are certain 

predefined primitives (and one can recognize their IO-

related character based on their types).

• For example, there are getChar :: IO Char and 

putChar :: Char -> IO ().

• Also, for multiple characters, getLine :: IO String

and putStr, putStrLn :: String -> IO ().

• More abstractly, for any type for which Haskell knows 

(or was instructed) how to convert from or to strings, 
readLn :: Read a => IO a for input as well as 

print :: Show a => a -> IO () for output.
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Input / Output in Haskell, the principles

To combine IO-computations (i.e., to build more complex 
action sequences based on the IO primitives), we can use the 
do-notation.

Its general form is: do cmd1
x2 <- cmd2
x3 <- cmd3
cmd4
x5 <- cmd5
...

where each cmdi has an IO type and to each xi (if present) a 
value of the type encapsulated in the cmdi will be bound (for 
use in the rest of the do-block), namely exactly the result of 
executing cmdi.
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Input / Output in Haskell, the principles

• The do-block as a whole has the type of the last cmdn.

• For that last command, generally no xn is present.

• Often also useful (for example, at the end of a do-

block): a predefined function return :: a -> IO a

that simply yields its argument, without any actual IO

action.

• What is never ever, at all, possible or allowed is to 

directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the 

encapsulated value from an IO computation, i.e., to 

simply turn an IO a value into an a value.
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User defined “control structures”

• As mentioned, also in the context of IO-computations, all 
abstraction concepts of Haskell are available, particularly 
polymorphism and definition of higher-order functions.

• This can be employed for defining things like:

while :: a -> (a -> Bool) -> (a -> IO a)
-> IO a

while a p body = loop a
where loop x = if p x then do x' <- body x

loop x'
else return x

• Which can then be used thus:

while 0
(< 10)
(\n -> do {print n; return (n+1)})
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