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What language did you mainly use in GPT?
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Java Python
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In what language are you most proficient?
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C

Java

other

Python
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What is your favourite programming language?

fmidue.github.io/ProPa-Slides

C
C#
Java
other
Python



Introduction / Motivation
“To know another language is to have a second soul.” 

Charlemagne, 747/748 – 814
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Many high-level programming languages in existence
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© 2004 O'Reilly Verlag GmbH & Co. KG
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Another perspective

fmidue.github.io/ProPa-Slides

From “American Scientist”: The Semicolon Wars, © 2006 Brian Hayes
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Also, popularity contests, …
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http://preview.tinyurl.com/popular-languages
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And yet another visualization
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http://preview.tinyurl.com/language-influences
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So, why such diversity?

• Can one (or each) language do “more” than others?

• Are there problems that one cannot solve in certain 
languages?

• Is there a “best” language? At least for a certain 
purpose or application area?

• What does actually separate different programming 
languages from each other?

fmidue.github.io/ProPa-Slides
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So, why such diversity?

Some relevant distinctions:
• syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)
• verbosity vs. succinctness (e.g., COBOL vs. Haskell)
• compiled vs. interpreted (e.g., C vs. Perl)
• domain-specific vs. general purpose (e.g., SQL vs. Java)
• sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
• typed vs. untyped (e.g., Haskell vs. Prolog)
• dynamic vs. static (e.g., Ruby vs. ML)
• declarative vs. imperative (e.g., Prolog vs. C)
• object-oriented vs. ???
• …
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And, yet, there are common principles

Approaches to the specification of programming languages
• … describing syntax,
• … describing semantics,
as well as implementation strategies.

Language concepts:
• variables and bindings
• type constructs
• control structures and abstraction features

And, of course, paradigms that span a whole class of languages.

fmidue.github.io/ProPa-Slides

14

A rough plan of the lecture

• We will focus on two paradigms: functional and logic 
programming.

• For each, we pick a specific language: Haskell, Prolog.
• We consider actual programming concepts, and also 

aspects related to semantics (evaluation, resolution).
• With Haskell, we explore typing concepts like 

inference, genericity, polymorphism.
• We discuss and compare concepts like variables, 

expressions vs. commands, etc., in different 
languages.

fmidue.github.io/ProPa-Slides
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Declarative programming

• Functional and logic programming are often called “declarative” or 
“descriptive” programming.

• The idea is that programmers can think more in terms of “What?” 
instead of “How?”, in other words, more in terms of specification 
than planning a certain computation process.

• Of course, there is still a need for algorithmic thinking etc., as 
there is no magic.

• But it is true that declarative programming has a more high-level, 
sometimes mathematical, feel to it.

• Also, the “What-instead-of-How” aspect will become concrete with 
observations like the roles of expressions vs. commands in 
different languages/paradigms.

• A side benefit in declarative languages is often reduced syntax.
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Other reasons for studying “new” paradigms

• Learning different languages now makes it easier to 
pick up new languages later on.

• Concepts from once “exotic” languages make their way 
into “mainstream” ones.

• In some application domains, there is an increased 
demand for very disciplined, conceptually expressive, 
mathematics-based languages.

• Generally, knowing more paradigms increases capacity 
to express ideas.

fmidue.github.io/ProPa-Slides
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Books on Haskell

• Programming in Haskell, 2nd edition; Graham Hutton
• Haskell – The Craft of Functional Programming, 3rd

edition; Simon Thompson
• Thinking Functionally with Haskell; Richard Bird
• Haskell-Intensivkurs; Marco Block, Adrian Neumann
• Einführung in die Programmierung mit Haskell; Manuel 

Chakravarty, Gabriele Keller

fmidue.github.io/ProPa-Slides
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Books on Prolog

• Learn Prolog Now!; Patrick Blackburn, Johan Bos, 
Kristina Striegnitz

• Programmieren in Prolog; William Clocksin, 
Christopher Mellish

• Prolog – Verstehen und Anwenden; Armin Ertl

fmidue.github.io/ProPa-Slides

A first glimpse of FP with CodeWorld
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A first complete animation program

import CodeWorld

main = animationOf scene

scene t =

circle 8

& colored green (solidRectangle 4 4)

& rotated (pi/2)

(translated 8 0 (colored red (polygon [(0,0),(1,-0.5),(1,0.5)])))

& pictures

[ rotated ((a+t)*pi/20)

(rectangle (4+a) (4+a)) | a <- [ 0, 0.5 .. 9 ] ]
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Expressions vs. commands
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Expression-based programming

• Proposition:
Functional programming is about expressions, 
whereas imperative programming is about commands.

• Some kinds of expressions you (probably) know:

𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐

𝒑𝒑 ∧ ¬ 𝒒𝒒 ∨ 𝒓𝒓

SUMIF(A1:A8,"<0")

• Generally: terms in any algebra, built from constants 
and functions/operators, possibly containing variables

fmidue.github.io/ProPa-Slides
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Properties of (pure) expressions

Expressions
• … are compositional, built completely from 

subexpressions,
• … often have a meaningful type,
• … have a value, which does not depend on “hidden 

influences”, and does not change on re-evaluation or 
based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions 
are built from subexpressions), but extends to typing and 
semantics/evaluation.

fmidue.github.io/ProPa-Slides
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Properties of (pure) expressions

Example 𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐:

The constants are 𝟏𝟏, 𝟐𝟐, 𝟑𝟑 of type ℤ.

The operators are + ∶ ℤ × ℤ → ℤ, � ∶ ℤ × ℤ → ℤ, ()𝟐𝟐 ∶ ℤ → ℤ.

The value of 𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐 depends only on the value of 
𝟐𝟐 and the value of 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐, the latter only depends on 
the value of 𝟑𝟑 and the value of (𝒙𝒙 + 𝟏𝟏)𝟐𝟐, …

fmidue.github.io/ProPa-Slides
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Properties of (pure) expressions

• Thanks to these properties, we can easily use notation 
known from mathematics, for example reformulating 
“𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐” as follows:
“𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚𝟐𝟐 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

• Also, we can apply simplifications, for example 
replacing exponentiation by multiplication:
“𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚 � 𝒚𝒚 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

• And while this example was about arithmetic 
expressions, the concepts apply much more generally.

• But only if we have pure expressions!

fmidue.github.io/ProPa-Slides
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The situation in imperative programming languages

• So what is different in imperative programming?
• Don’t we also have expressions there?

For example in:
b = 100000;
if (z > 0) {
z = 100 + z;
j = 0;
while (b < 200000) {
b = b * z / 100;
j = j + 1; }

} else j = -1;

• Yes, there are expressions, but they are not the dominating 
syntactical construct. Commands are!

fmidue.github.io/ProPa-Slides
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The situation in imperative programming languages

• Why is this difference relevant? What properties do commands, as 
opposed to expressions, not have?

• Well, for example, they are not even syntactically compositional:
Not every well-formed smaller part of a command is itself a 
command.

while (b < 200000) {
b = b * z / 100;
j = j + 1;

}

• Instead, expressions occur, also keywords, …
• Moreover, commands do not always have a meaningful type.
• Or even just a value. (Try giving a value for the above block.)

fmidue.github.io/ProPa-Slides
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The situation in imperative programming languages

• As a consequence, we cannot name arbitrary well-formed smaller 
parts (as opposed to what we saw for expressions and their 
subexpressions).

• For example, we cannot simply write:
body = {
b = b * z / 100;
j = j + 1;

}
while (b < 200000) body;

• Even workarounds involving functions/procedures/methods are 
not as flexible and useful as the kind of mathematical notation for 
expressions: “𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚𝟐𝟐 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

fmidue.github.io/ProPa-Slides
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The situation in imperative programming languages

• Okay, so what about the sublanguage of expressions in an 
imperative language? Can they, at least, be treated as we saw 
before?

• Not in general! For example, we saw that mathematically we 
should be able to rewrite something like “𝒆𝒆𝒙𝒙𝒑𝒑𝟏𝟏 + 𝒆𝒆𝒙𝒙𝒑𝒑𝟐𝟐 � (𝒆𝒆𝒙𝒙𝒑𝒑𝟑𝟑)𝟐𝟐” as 
any of:

𝒆𝒆𝒙𝒙𝒑𝒑𝟏𝟏 + 𝒆𝒆𝒙𝒙𝒑𝒑𝟐𝟐 � 𝒗𝒗𝒗𝒗𝒓𝒓𝟐𝟐 where 𝒗𝒗𝒗𝒗𝒓𝒓 = 𝒆𝒆𝒙𝒙𝒑𝒑𝟑𝟑
𝒆𝒆𝒙𝒙𝒑𝒑𝟏𝟏 + 𝒆𝒆𝒙𝒙𝒑𝒑𝟐𝟐 � 𝒗𝒗𝒗𝒗𝒓𝒓 � 𝒗𝒗𝒗𝒗𝒓𝒓 where 𝒗𝒗𝒗𝒗𝒓𝒓 = 𝒆𝒆𝒙𝒙𝒑𝒑𝟑𝟑
𝒆𝒆𝒙𝒙𝒑𝒑𝟏𝟏 + 𝒆𝒆𝒙𝒙𝒑𝒑𝟐𝟐 � 𝒆𝒆𝒙𝒙𝒑𝒑𝟑𝟑 � 𝒆𝒆𝒙𝒙𝒑𝒑𝟑𝟑

• But code snippets like “result = exp1 + exp2 * (exp3)^2;” 
do not always take well to being replaced by: 

var = exp3; result = exp1 + exp2 * var^2;

• … or by code snippets corresponding to the other expression 
alternatives above.

fmidue.github.io/ProPa-Slides
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The situation in imperative programming languages

• Indeed, consider these four code snippets: 
result = exp1 + exp2 * (exp3)^2;
var = exp3; result = exp1 + exp2 * var^2;
var = exp3; result = exp1 + exp2 * var * var;
result = exp1 + exp2 * exp3 * exp3;

• And imagine instantiations with exp3 being the “expression” i++
or some invocation f() for a procedure/method f.

• The problem is that expressions in an imperative language are 
typically not pure expressions. Instead, they have side-effects!

• (For same reason, re-evaluation of an expression can change the 
value. And order of evaluating subexpressions becomes relevant.)

fmidue.github.io/ProPa-Slides

32

So what?

• So, how “bad” is all that?
• Do these artificial examples “prove” anything?

• Well, I haven’t (yet?) really argued that the pure 
expression-based style is better in some sense.

• But what should have become clear is that it is 
different!

• In any case, let us (again) “do” something with 
CodeWorld.    (… also in your first exercise tasks)

fmidue.github.io/ProPa-Slides



Another look at FP with CodeWorld
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Describing a picture via an expression

A rather simple example:
main :: IO ()

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture

triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective …

fmidue.github.io/ProPa-Slides
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Brief recap from last week

• Expressions: syntactic structures one could imagine 
after the “=” in an assignment “var = …” in C or Java.

• Values: results of evaluating expressions, obtained by 
combining values of subexpressions.

• Commands: syntactic structures that are characterized 
not so much by what (if anything at all) they evaluate 
to, but rather by what effect they have (change of 
storage cells, looping, etc.).

• In a pure setting without commands, any two 
expressions that have the same value can be replaced 
for each other, without changing the behaviour of the 
program.

fmidue.github.io/ProPa-Slides
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Describing a picture via an expression

Observations:
• Compositionality on level of syntax, types, and values.
• Pictures are expressions/values here, can be named etc.
• Functions/operators used:

circle     : ℝ → Picture
polygon    : [ℝ × ℝ ] → Picture
colored    : Color × Picture → Picture
translated : ℝ × ℝ × Picture → Picture
&         : Picture × Picture → Picture

• Properties like: translated a b (colored c d)
≡ colored c (translated a b d)

fmidue.github.io/ProPa-Slides
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Describing an animation via a function

A slight variation of example from last week:
main :: IO ()

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

• Dependence on time expressed via parameter t.

• That parameter is never set by us ourselves for the animation.
• No for-loop or other explicit control.
• Instead, the animationOf construct takes care “somehow”

(this involves evaluating scene for different t).

fmidue.github.io/ProPa-Slides
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Another example

• Mathematically describing dynamic behaviour as a function of 
time should not be much of a surprise.

• A well-known physics example:
𝒙𝒙 𝒕𝒕 = 𝒗𝒗𝟎𝟎𝒙𝒙 � 𝒕𝒕
𝒚𝒚 𝒕𝒕 = 𝒗𝒗𝟎𝟎𝒚𝒚 � 𝒕𝒕 −

𝒈𝒈
𝟐𝟐
� 𝒕𝒕𝟐𝟐

• As a program:
scene :: Double -> Picture
scene t = cliff & translated x y (circle 0.1)
where x = 3 * t

y = 6 * t - 9.81 / 2 * t^2
cliff = polyline [(-5,0),(0,0),(0,-2)]

fmidue.github.io/ProPa-Slides



Rich expressions
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A desire for additional expressivity

• In the examples today, we have already expressed 
continuous distribution, throughout time, via functions.

• What if we also, or alternatively, want a discrete 
distribution, “throughout space”?

• So, instead of one triangle moving in time, we want 
several static triangles at different places.

• But we do not really want to replicate these “by hand”.
• Maybe now is the time for a for-loop?
• No, we don’t have that.
• But what do we have instead?

fmidue.github.io/ProPa-Slides
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One kind of richer expressions: list comprehensions

Using a list comprehension:
main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• With  pictures :: [ Picture ] -> Picture.
• And a list comprehension  [ scene d | d <- [0..5] ].
• This is not exactly like a for-loop, for several reasons.

• Instead, it is like a mathematical set comprehension 𝟐𝟐 � 𝒏𝒏 𝒏𝒏 ∈ ℕ .

fmidue.github.io/ProPa-Slides
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More mundane examples of list comprehensions

> [1,3..10]

[1,3,5,7,9]

> [ x^2 | x <- [1..10], even x ]

[4,16,36,64,100]

> [ y | x <- [1..10], let y = x^2, mod y 4 == 0 ]

[4,16,36,64,100]

> [ x * y | x <- [1,2,3], y <- [1,2,3] ]

[1,2,3,2,4,6,3,6,9]

fmidue.github.io/ProPa-Slides
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More mundane examples of list comprehensions

> [ (x,y) | x <- [1,2,3], y <- [4,5] ]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [ (x,y) | y <- [4,5], x <- [1,2,3] ]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

> [ (x,y) | x <- [1,2,3], y <- [1..x] ]

[(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

> [ x ++ y | (x,y) <- [("a","b"),("c","d")] ]

["ab","cd"]

fmidue.github.io/ProPa-Slides
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So where are we, expressivity-wise?

Some takeaways from examples we have seen:
• Non-constant behaviour expressed as functions, in the 

mathematical sense. 𝒇𝒇 𝒙𝒙 = ⋯
• Such a description defines the behaviour “as a whole”, not 

in a “piecemeal” fashion.
• For example, there is no “first run this piece of animation, 

then that piece, and then something else”.
• Actually, there is not even a concept of “this piece of 

animation stops at some point”.
Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential 
commands, with imperative keywords or semicolons etc.
List comprehensions are also not the answer, because they do 
not define functions, just (list) values. Instead, …

fmidue.github.io/ProPa-Slides
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Case distinctions

• Switching by conditional expressions:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• This is very much in line with case distinctions in 
mathematical functions:

𝒇𝒇 𝒙𝒙 = �−𝒙𝒙, 𝒊𝒊𝒇𝒇 𝒙𝒙 < 𝟎𝟎
𝒙𝒙, 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

fmidue.github.io/ProPa-Slides
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Comparison to the situation in imperative setting

• In C/Java we have two forms of if on commands:

if (...) { ... }
if (...) { ... } else { ... }

• In an expression language, the form without else does not make 
sense, so in Haskell we always have:

if ... then ... else ...

• This corresponds to C/Java’s conditional operator:

... ? ... : ...

fmidue.github.io/ProPa-Slides
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Some usage hints on case distinctions in Haskell

• Pragmatically, an if-then-else expression “without an else” 
would be realized by having some “neutral value” in the else-
branch. Remember:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• Similarly, in a list context:  if condition then list else []

• Also, do not hesitate to use if-then-else as subexpressions 
freely:

f x y (if exp1 then exp2 else exp3)
≡ if exp1 then f x y exp2 else f x y exp3

fmidue.github.io/ProPa-Slides



Some remarks on syntax and types
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“Oddities” of syntax at the type level

Instead of:
circle     : ℝ → Picture
polygon    : [ℝ × ℝ ] → Picture
colored    : Color × Picture → Picture
translated : ℝ × ℝ × Picture → Picture
&         : Picture × Picture → Picture

type signatures actually look like this:
circle     :: Double -> Picture
polygon    :: [ (Double, Double) ] -> Picture
colored    :: Color -> Picture -> Picture
translated :: Double -> Double -> Picture -> Picture
(&)       :: Picture -> Picture -> Picture

fmidue.github.io/ProPa-Slides
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“Oddities” of syntax at the expression/function level

• Instead of  f(x) and  g(x,y,z), we write  f x and  g x y z.

• As an example for nested function application, instead of  
g(x,f(y),z), we write  g x (f y) z.

• The same syntax is used at function definition sites, so something 
like

float f(int a, char b)
{ ... }

in C or Java would correspond to

f :: Int -> Char -> Float
f a b = ...

in Haskell.

fmidue.github.io/ProPa-Slides
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Layout-sensitivity

In Haskell, this:
let y = a * b

f x = (x + y) / y
in f c + f d

is equivalent to:
let { y = a * b; f x = (x + y) / y }
in f c + f d

But these are not accepted:
let y = a * b let y = a * b

f x = (x + y) / y f x = (x + y) / y
in f c + f d in f c + f d

fmidue.github.io/ProPa-Slides
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Other syntax remarks

• Haskell beginners tend to use unnecessarily many 
brackets. For example, no need to write f (g (x)) or 
(f x) + (g y), since f (g x) and f x + g y
suffice.

• Further brackets can sometimes be saved by using the 
$ operator, for example writing f $ g x $ h y instead 
of f (g x (h y)). I don’t like it in beginners’ code.

• We let Autotool give warnings about redundant 
brackets, as well as about overuse of $.
Sometimes we enforce adherence to those warnings.

fmidue.github.io/ProPa-Slides

53

A specific observation based on exercise submissions

If you have repeated occurrences of a common subexpression, 
share them! For example, instead of something like this:

scene t =
if 8 * sin t > 0
then translated (8 * cos t) (8 * sin t) ...
else ...

rather write this:

scene t =
let x = 8 * cos t

y = 8 * sin t
in if y > 0 then translated x y ... else ...

fmidue.github.io/ProPa-Slides
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Specifics about number types

• Haskell has various number types: Int, Integer, 
Float, Double, Rational, …

• Number literals can have a different concrete type 
depending on context, e.g., 3 :: Int, 3 :: Float, 
3.5 :: Float, 3.5 :: Double

• For general expressions there are overloaded 
conversion functions, for example fromIntegral with, 
among others, any of the types Int -> Integer,
Integer -> Int, Int -> Rational, …, and 
truncate, round, ceiling, floor, each with any of 
the types Float -> Int, Double -> Integer, …

fmidue.github.io/ProPa-Slides
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… and arithmetic operators

• Operators are also overloaded, and often no 
conversion is necessary, for example in 3 + 4.5 or 
also in:

f x = 2 * x + 3.5
g y = f 4 / y

• In other cases, conversion is necessary, for example in 
this:

f :: Int -> Float
f x = 2 * fromIntegral x + 3.5

or:
f x = 2 * x + 3.5
g y = f (fromIntegral (length "abcd")) / y

fmidue.github.io/ProPa-Slides
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… and arithmetic operators

• Some operators are available only at certain types, e.g., 
no division symbol “/” on integer types.

• Instead, the function div :: Int -> Int -> Int
(also on Integer).

• Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 `div` 3 instead 
of div 17 3.

• Useful mathematical constants and functions exist, 
e.g., pi, sin, sqrt, min, max, … 

fmidue.github.io/ProPa-Slides
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Some observations based on past years’ exercises

• In case of doubt concerning number conversions, it 
usually does not hurt to add some fromIntegral-
calls, which in the worst case will be no-ops (since, 
among others, fromIntegral :: Int -> Int).

• It is always a good idea to write down type signatures 
for (at least) top-level functions. Among other benefits, 
it saves you from having to deal with (errors involving) 
types like:

fun :: (Floating a, Ord a) => a -> a

fmidue.github.io/ProPa-Slides
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Types beside number types

Other pre-existing types:
• Type Bool, with values True and False and operators 
&&, ||, and not.

• Type Char, with values 'a', 'b', …, '\n' etc., and 
functions succ, pred, as well as comparison operators.

• List types: [Int], [Bool], [[Int]], …, with various 
pre-defined functions and operators. 

• Character sequences: type String = [Char], with 
special notation "abc" instead of ['a','b','c'].

• Tuple types: (Int,Int), (Int,String,Bool), 
((Int,Int),Bool,[Int]), also [(Bool,Int)] etc.

fmidue.github.io/ProPa-Slides

Programming by case distinction
(more ways of doing it)
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Expressing conditional behaviour

Remember:

• Switching by conditional expressions:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• This is very much in line with case distinctions in 
mathematical functions:

𝒇𝒇 𝒙𝒙 = �−𝒙𝒙, 𝒊𝒊𝒇𝒇 𝒙𝒙 < 𝟎𝟎
𝒙𝒙, 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
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Expressing conditional behaviour

• Likely not yet seen, function definition using guards:

scene t
| t <= pi               = ...
| pi < t && t <= 2 * pi = ...
| 2 * pi < t            = ...

• This is again similar to mathematical notation:

𝒇𝒇 𝒙𝒙 = �
𝟎𝟎, 𝒊𝒊𝒇𝒇 𝒙𝒙 ≤ 𝟎𝟎
𝒙𝒙, 𝒊𝒊𝒇𝒇 𝟎𝟎 < 𝒙𝒙 ≤ 𝟏𝟏
𝟏𝟏, 𝒊𝒊𝒇𝒇 𝒙𝒙 > 𝟏𝟏
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Function definition using guards

• Let us discuss some details based on this example:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n > 0 = n * factorial (n - 1)

• First of all, what about the order of clauses?
• Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer
factorial n

| n > 0 = n * factorial (n - 1)
| n == 0 = 1
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Function definition using guards

• What if the guard conditions overlap?
• Then this is okay:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

but this is problematic:

factorial :: Integer -> Integer
factorial n

| n >= 0 = n * factorial (n - 1)
| n == 0 = 1

• Always the first matching clause is used!
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Function definition using guards

• Even with the “correct” order:

factorial :: Integer -> Integer
factorial n
| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

we can have problems with some inputs.

• If no clause matches, we get a runtime error!
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Function definition using guards

• In fact, if called with appropriate settings, the compiler 
warns us of a potential runtime error ahead of time.

• We can avoid both the warning and the actual non-
exhaustiveness error at runtime by having a “catch-all” 
clause:

factorial :: Integer -> Integer
factorial n
| n == 0 = 1
| otherwise = n * factorial (n - 1)
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Function definition using guards

• In this specific case, negative inputs would still be a 
problem.

• Which we could remedy as follows:

factorial :: Integer -> Integer
factorial n
| n <= 0 = 1
| otherwise = n * factorial (n - 1)

• Some lessons: order matters (and can be exploited), 
exhaustiveness matters. Also, some further aspects…
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Function definition using guards

• The compiler’s checks ahead of time are nice, but 
necessarily not perfect.

• For example, it cannot in general detect infinite recursion 
ahead of time. (The Halting Problem!)

• Even the “simpler” static exhaustiveness checks are not as 
powerful as one might sometimes hope.

• For example, one might hope that something like this:

f x y
| x == y = ...
| x /= y = ...

is statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.
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Function definition using guards

• Also, the more desirable “fix” to the issue of possible 
negative inputs for

factorial :: Integer -> Integer
factorial n
| n == 0 = 1
| otherwise = n * factorial (n - 1)

(instead of switching to n <= 0 in the first clause) 
would be to statically prevent negative inputs from 
occurring at all, via the type system.

• But that is a topic for another lecture.
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Function definition using guards

• For now, let us apply our insights to this situation 
considered earlier:

scene t
| t <= pi               = ...
| pi < t && t <= 2 * pi = ...
| 2 * pi < t            = ...

• Here is how this should probably look instead:

scene t
| t <= pi     = ...
| t <= 2 * pi = ...
| otherwise   = ...
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Function definition using guards

Some further syntactic variations:

factorial :: Integer -> Integer
factorial n | n == 0 = 1
factorial n | otherwise = n * factorial (n - 1)

factorial :: Integer -> Integer
factorial n | n == 0 = 1
factorial n          = n * factorial (n - 1)

factorial :: Integer -> Integer
factorial 0 = 1
factorial n = n * factorial (n - 1)
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Function definition using guards

Another example:

ackermann :: Integer -> Integer -> Integer
ackermann 0 n | n >= 0 = n + 1
ackermann m 0 | m > 0 = ackermann (m - 1) 1
ackermann m n | m > 0 && n > 0
= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness 
warnings.
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Function definitions generally

General rules for function definitions:

• One or more equations, with or without guards.

• One or more arguments; so far, only variable names 
(can be anonymous) or constants.

• Uniqueness of variable names within one equation.

• Never expressions, in argument position at definition 
sites, that would require computation or “solving”.
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Function definitions generally

A few more examples:

not :: Bool -> Bool
not True = False
not _ = True

(&&) :: Bool -> Bool -> Bool
True && True = True
_ && _ = False

(&&) :: Bool -> Bool -> Bool
b && True = b
_ && _ = False
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Some observations based on exercise submissions

If the Autotool/hlint feedback mentions “eta reduction”, here 
is what it means:
• Instead of something like:

ball :: Double -> Picture
ball t = solidCircle t

one might just as well write:
ball :: Double -> Picture
ball = solidCircle

• Also consider:
opening :: Double -> Picture
opening = rectangle 10
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Some observations based on exercise submissions

Almost every time one sees a use of access-by-index in 
Haskell code, it was not the best choice of expression.

A typical case is if something corresponding to this:
whatever [ computeFrom argument

| argument <- list ]

was instead written like this:
whatever [ computeFrom (list !! index)

| index <- [0..(length list - 1)] ]
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A few words about lists up front

• We will consider a lot of examples in the lecture and 
exercises that deal with lists.

• But that is mostly for didactical reasons. In the “real 
world”, there are often more appropriate data 
structures (and we will eventually see how to define 
them ourselves).

• In part due to historical precedent (Lisp), Haskell has a 
very rich library of list processing functions.

• It also has specific syntactical support for lists (e.g., 
list comprehensions).

• As already mentioned, Haskell lists are homogeneous.
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Examples of existing (first-order) functions on lists

take 3 [1..10] == [1,2,3]

drop 3 [1..10] == [4,5,6,7,8,9,10]

null [] == True

null "abcde" == False

length "abcde" == 5

head "abcde" == 'a'

last "abcde" == 'e'

tail "abcde" == "bcde"

init "abcde" == "abcd"

splitAt 3 "abcde" == ("abc","de")

"abcde" !! 3 == 'd'

reverse "abcde" == "edcba"

"abc" ++ "def" == "abcdef"

zip "abc" "def" == [('a','d'),('b','e'),('c','f')]

concat [[1,2],[],[3]] == [1,2,3]
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Different ways of working with lists

We now have certain choices, such as whether to work 
with recursion or by just combining existing functions 
(and possibly list comprehensions).
For example:
isPalindrome :: String -> Bool
isPalindrome s | length s < 2 = True
isPalindrome s = head s == last s &&

isPalindrome (init (tail s))

vs.:
isPalindrome :: String -> Bool
isPalindrome s = reverse s == s
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Infinite lists

• In Haskell there are even expressions and values for 
infinite lists, for example:

[1,3..] ≡ [1,3,5,7,9,...]

[ n^2 | n <- [1..] ] ≡ [1,4,9,16,...]

• And while we of course cannot print complete such 
lists, we can still work normally with them, as long as 
the ultimate output is finite:

take 3 [ n^2 | n <- [1..] ] == [1,4,9]

zip [0..] "ab" == [(0,'a'),(1,'b')]
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Infinite lists

But there is no mathematical magic at work, so for 
example this:

[ m | m <- [ n^2 | n <- [1..] ], m < 100 ]

will “hang” after producing a finite prefix.

Why is that, actually?

Discussion: involves referential transparency!
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An interesting function on finite lists

Essentially Quicksort:

sort :: [Integer] -> [Integer]
sort [] = []
sort list =
let
pivot = head list
smaller = [ x | x <- tail list, x < pivot ]
greater = [ x | x <- tail list, x >= pivot ]

in sort smaller ++ [ pivot ] ++ sort greater
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Wholemeal programming

• “Functional languages excel at wholemeal 
programming, a term coined by Geraint Jones. 
Wholemeal programming means to think big: work with 
an entire list, rather than a sequence of elements; …”

Ralf Hinze

• “Wholemeal programming is good for you: it helps to 
prevent a disease called indexitis, and encourages 
lawful program construction.”

Richard Bird
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Wholemeal programming on lists

We earlier had this example:
main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• This is already a wholemeal approach, since we express the 
application of scene to the elements of [0..5] “in one go”.

• Specifically, we do not conceptually consider “one after another”. 
Instead, the resulting values are completely independent, no 
individual instance influences any other.

• Just like in the mathematical notation 𝒇𝒇(𝒏𝒏) 𝒏𝒏 ∈ ℕ .
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Wholemeal programming on lists

We earlier had this example:
main :: IO ()

main = drawingOf (pictures [ scene d | d <- [0..5] ])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• Of course, the individual evaluations will, on a sequential machine, 
happen in some order. And the resulting list is really a sequence, 
not a set. But the individual values will be independent of all that.

• Indeed, one can show that for any f and n, in Haskell:
[ f a | a <- [0..n] ]

≡ reverse [ f a | a <- reverse [0..n] ]
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Contrast to for-loops in Java, C, etc.

• In contrast, it is not remotely true that in an imperative 
language we can always replace a piece of code written like 
this:

for (a = 0; a <= n; a++)
result[a] = f(a);

by this:
for (a = n; a >= 0; a--)

result[a] = f(a);

• And even for the cases where commands as above are
equivalent, a formulation given that way is less useful than 
the Haskell equation we saw, or indeed its more general 
version:

reverse [ f a | a <- list ]
≡ [ f a | a <- reverse list ]
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Wholemeal programming on lists

• Another example: Assume we want to multiply each 
element of an array or list by its position in that data 
structure, and sum up over all the resulting values.

• It seems fair to say that this is a typical solution in C:

int array[n];
int result = 0;

for (int i = 0; i < n; i++)
result = result + i * array[i];

• And that is about okay, but it does suffer from indexitis.

fmidue.github.io/ProPa-Slides



90

Wholemeal programming on lists

• The same example, in a wholemeal fashion, in Haskell:

sum [ i * v | (i, v) <- zip [0..] list ]

• Nice, short, declarative.
• Of course, one could consider this cheating, because it 

is using a conveniently predefined function sum.
• But actually, that is besides the point. Even without that 

convenience function, it would not have taken more 
than a dozen keystrokes to express the summation.

• And using a convenient array sum function would not 
exactly have made the C version any nicer than it is.
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Wholemeal programming on lists

• So let us discuss the actual issues, expressivity and 
susceptibility to change and refactoring.

• Say, what if we decided that the counting of positions 
should start at 1 instead of 0?

• In the C version, that could mean we would switch from 
this:

for (int i = 0; i < n; i++)
result = result + i * array[i];

to this:
for (int i = 1; i <= n; i++)
result = result + i * array[i-1];

• Indexitis!
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Wholemeal programming on lists

• In the Haskell version, we simply switch from this:

sum [ i * v | (i, v) <- zip [0..] list ]

to this:
sum [ i * v | (i, v) <- zip [1..] list ]

• To be fair again, in C we could have made a different 
edit:

for (int i = 0; i < n; i++)
result = result + (i+1) * array[i];

• But actually, that is just indexitis in a different form.
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Wholemeal programming on lists

• The fundamental issue in the C version is a lack of 
conceptual separation of values to enumerate/process 
on the one hand, and loop control on the other hand.

• Whereas the Haskell version has that separation in the 
zip [k..] ... expression.

• Basically, the Haskell version needs no explicit loop 
control, it does not access data structure elements by 
index (remember what I said about avoiding use of the 
!! operator whenever possible), and it does not need 
to increment a loop counter or talk about the “loop 
end” condition (because: infinite lists).
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Wholemeal programming on lists

• Okay, but are we fooling ourselves, efficiency-wise?
• Certainly, code like

for (int i = 0; i < n; i++)
result = result + i * array[i];

is more efficient than

sum [ i * v | (i, v) <- zip [0..] list ]

because it does not need to use extra memory, and 
does not need several data structure traversals?
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Wholemeal programming on lists

• Well, no. Actually, a compiler can translate the 
declarative code into a tight C-like loop, not using an 
intermediate data structure, just fine.

• A compiler can even spot parallelization opportunities, 
thanks to the “independent values” aspect we already 
discussed when comparing list comprehensions 
against for-loops.

• That all has to do also with the “lawful program 
construction” aspect from the Richard Bird quote.

• We could also talk more about refactoring…
• But is what we saw for the somewhat artificial example 

now representative of real situations? Claim: Yes!
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Polymorphic functions on lists

• Remember that each Haskell list is homogeneous, i.e., 
cannot contain elements of different types.

"abc"   :: [Char]
[1,2,3] :: [Integer]
['a',2] -- ill-typed

• At the same time, functions and operators on lists can 
be used quite flexibly:

reverse "abc" == "cba"
reverse [1,2,3] == [3,2,1]
"abc" ++ "def" == "abcdef"
[1,2] ++ [3,4] == [1,2,3,4]

• We have already depended on this flexibility a lot!
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Polymorphic functions on lists

• So there should be a way to reconcile the rigidity of 
types with flexible use of functions.

• We want to be able to write

"abc" ++ "def" and [1,2] ++ [3,4],

as well as

elem 2 [1,2] and elem 'c' "ab",

but at the same time prevent calls like

"ab" ++ [3,4] and elem 'a' [1,2,3].
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Polymorphic functions on lists

• So what are the types of functions like those seen?
• We do not have, and clearly do not want, different 

functions like reverseChar :: [Char] -> [Char]
and reverseInteger :: [Integer] -> [Integer].

• Instead, we use type variables, as in:

reverse :: [a] -> [a]

• That is not, at all, like being untyped. For example, the 
type (++) :: [a] -> [a] -> [a] does not mean 
that “anything goes”.
(Still not possible to write this: "ab" ++ [3,4].)
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Polymorphic functions on lists

• We have already seen a lot of functions that fit this 
pattern:

head   :: [a] -> a
tail   :: [a] -> [a]
last   :: [a] -> a
init :: [a] -> [a]
length :: [a] -> Int
null   :: [a] -> Bool
concat :: [[a]] -> [a]

• In concrete applications, the type variable gets 
instantiated appropriately:  head "abc" :: Char. 
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Polymorphic functions on lists

• Of course, a polymorphic function does not need to be 
polymorphic in all its arguments.

• For example:

(!!) :: [a] -> Int -> a
take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([a],[a])

• And what about zip?
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Polymorphic functions on lists

• The function zip also takes homogeneous lists as 
arguments.

• But unlike the case of (++), where we want to allow 
"ab" ++ "cd" and [1,2] ++ [3,4], but to disallow 
"ab" ++ [3,4], for zip we want to allow all of the 
following:

zip "ab" "cd"
zip [1,2] [3,4]
zip "ab" [3,4]

• So the type cannot be like that for (++):
[a] -> [a] -> ...
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Polymorphic functions on lists

• Instead:
zip :: [a] -> [b] -> [(a,b)]

• Different type variables can be, but do not have to be, 
instantiated by different types.

• Hence, all of these make sense:
zip "ab" "cd" -- a = Char, b = Char
zip [1,2] [3,4] -- a = Int, b = Int
zip "ab" [3,4] -- a = Char, b = Int

• Whereas a mixed call for (++) does not:
"ab" ++ [3,4] -- a = Char or Int?
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Polymorphic functions in other languages

• Have you seen something like those types in another 
language before?

• Example in Java with Generics:

<T> List<T> reverse(List<T> list)
{ ... }

corresponding to:

reverse :: [a] -> [a]
reverse list = ...
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Inference of polymorphic types

• One aspect (among several) that distinguishes 
polymorphism in Haskell and its FP predecessors from 
those other languages is type inference.

• We need not declare polymorphism, since the compiler 
will always infer the most general type automatically.

• For example, for f (x,y) = x the compiler infers
f :: (a,b) -> a.

• And for g (x,y) = if pi > 3 then x else y,
g :: (a,a) -> a.
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Consequences of polymorphic types

• Polymorphism has really interesting semantic 
consequences.

• For example, earlier in the lecture, I mentioned that 
always:

reverse [ f a | a <- list ]
≡ [ f a | a <- reverse list ]

• What if I told you that this holds, for arbitrary f and 
list, not only for reverse, but for any function with 
type [a] -> [a], no matter how it is defined?

• Can you give some such functions (and check the 
above claim on an intuitive level)?
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Consequences of polymorphic types

• Recall that the reverse-claim earlier in the lecture 
occurred in the context of comparing, in the imperative 
world, this:

for (a = 0; a <= n; a++)
result[a] = f(a);

vs. this:
for (a = n; a >= 0; a--)
result[a] = f(a);

• Not only are these two loops not necessarily 
equivalent, but even when imposing conditions under 
which they are, we do not get an as general and readily 
applicable law as just seen in the declarative world.
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Higher-order functions

• So far, we have mainly dealt with first-order functions, 
that is, functions that take “normal data” as input 
arguments and ultimately return some value.

• But we have also already seen functions to which we 
passed other functions as arguments. For example, 
quickCheck and animationOf.

• Indeed, let us take a look at the type of the latter:
animationOf :: (Double -> Picture) -> IO ()

• Note: Every function is a (mathematical) value, but not 
every value is a function.
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The types of higher-order functions

• The type

animationOf :: (Double -> Picture) -> IO ()

means something completely different than the type

animationOf :: Double -> Picture -> IO ()

• Indeed, parentheses in such places are very significant.

• Let us discuss this based on a simpler example type.
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The types of higher-order functions

• What are some functions of the following type?

f :: Int -> Int -> Int

• And what about the following type?

f :: (Int -> Int) -> Int

• What kinds of inputs does either of these take?
• And what can they do with their inputs?
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The types of higher-order functions
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Functions to pass to higher-order functions

• Where do we get functions from that we can pass as 
arguments to higher-order functions?

• Well, in Haskell functions are almost everywhere, right? 
So we should not have any shortage of supply.

• Of course, there are many predefined functions already.
• We could also use functions we have explicitly defined 

in our program (such as passing your own scene
function to animationOf).

• Or partial applications of any of those. For example, 
(+) :: Int -> Int -> Int, and as a consequence, 
(+) 5 :: Int -> Int.
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Functions to pass to higher-order functions
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Some syntactic specialties

• Indeed, the type Int -> Int -> Int could be read as 
Int -> (Int -> Int).

• But those parentheses can be omitted.
• Two viewpoints here: a function that takes two Int

values and returns one Int value, or a function that 
takes one Int value and returns a function that takes 
one Int value and returns one Int value.

• Both viewpoints are valid! No difference in usage 
(thanks to Haskell’s function application syntax).

• Another syntactic specialty: so-called “sections”.
For example, “(+) 5” can be written as “(5 +)”.
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Some syntactic specialties
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Lambda-abstractions

• We can also syntactically create new functions “on the 
fly”, instead of predefined or own, explicitly defined 
and named, functions already in the program.

• Such anonymous functions use the so-called lambda-
abstraction syntax (which we have already seen in the 
context of QuickCheck tests): \x -> x + x

• So, some options of functions we could pass to a 
function f :: (Int -> Int) -> Int are:
id, succ, (gregorianMonthLength 2019), (- 5),
(\x -> x + x), (\n -> length [1..n])
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Lambda-abstractions

• The lambda-abstraction syntax also allows us to get a 
clearer view on Haskell’s function definition syntax 
(and its choice to be different from standard 
mathematical function definition syntax).

• Namely, the following four definitions are equivalent 
(each of type add :: Int -> Int -> Int):

add x y = x + y
add x = \y -> x + y
add = \x -> \y -> x + y
add = \x y -> x + y

• With standard mathematical notation, add(x,y) = , 
such variations would not have been so fluent.

fmidue.github.io/ProPa-Slides

119

Usefulness of higher-order functions

• But is any of that really useful to us?
• The examples so far look somewhat esoteric and 

artificial, except maybe for the animationOf and  
quickCheck “drivers”, which we do not know how to 
write ourselves yet though, anyway (due in part to the 
involvement of IO).

• Well, there are many immediately useful higher-order 
functions on lists as well…
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Higher-order functions on lists

• For example, the function

foldl1 :: (a -> a -> a) -> [a] -> a

puts a (left-associative) function/operator between all 
elements of a non-empty list.

• So to compute the sum of such a list:

foldl1 (+) [1,2,3,4]

which will expand to:

1 + 2 + 3 + 4
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Higher-order functions on lists

• Another useful function:

map :: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

• For example:

map even [1..10]

map (dilated 5) [ pic1, pic2, pic3 ]
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Higher-order functions on lists

• And another one:

filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain 
predicate.

• For example,

filter isPalindrome completeDictionary

filter (> 0.5) bonusPercentageList
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Relationship to list comprehensions

• While the following are not the actual definitions of map
and filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]
map f list = [ f a | a <- list ]

filter :: (a -> Bool) -> [a] -> [a]
filter p list = [ a | a <- list, p a ]

• Conversely, every list comprehension expression, no 
matter how complicated with several generators, 
guards, etc., can be implemented via map, filter, and 
concat.
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Relationship to list comprehensions

• Is programming with map and filter (and foldl1 and 
the like) still “wholemeal programming”, which is what 
we have mostly used list comprehensions for so far?

• Yes, absolutely. In a sense even more so, since higher-
order functions provide a further step in the direction 
of more abstraction.

• For example, if we want to square some numbers from 
a given list, subject to the condition that we are 
specifically interested in numbers divisible by four, but 
still have to work out whether we want to check this 
divisibility before or after squaring, then …
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Relationship to list comprehensions

… with list comprehensions we would consider, and 
maybe experiment with,

[ x^2 | x <- list, x `mod` 4 == 0 ]
vs.

[ y | x <- list, let y = x^2, y `mod` 4 == 0 ]

While with map and filter we would simply decide 
between

map (^2) . filter (\x -> x `mod` 4 == 0)
and

filter (\x -> x `mod` 4 == 0) . map (^2)

fmidue.github.io/ProPa-Slides

127

Expressing laws

• Also, a law like (mentioned earlier):

reverse [ f a | a <- list ]
≡ [ f a | a <- reverse list ]

can nicely be expressed as:

reverse . map f ≡ map f . reverse

• Then we can also ask under which conditions this holds:

filter p . map f ≡ map f . filter q

• Generally, higher-order functions are a boon for “lawful 
program construction” (see the Richard Bird quote).
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Types in Haskell

• We have so far seen various types on which functions 
can operate, such as number types (Integer, Float, 
…), other base types like Bool and Char, as well as list 
and tuple constructions to make compound types, 
arbitrarily nested ([…], (…,…)).

• We have also seen that libraries can apparently define 
their own, domain specific types, such as Picture.

• To do the same ourselves: algebraic data types.
• These are a more general and more stringent version of 

what is usually known as enumeration or union types. 
They are also the inspiration for features like Swift’s 
(recursive) enum types.
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Simple enumeration types

• Let us start simple. Assume we want to be able to talk 
about days of the week, and compute things like “this 
is a workday, yes/no”.

• We could fix some encoding of Monday, Tuesday etc. 
as numbers (e.g., Monday = 1, Tuesday = 2, …) and 
define functions like:

workday :: Integer -> Bool
workday d = d < 6

• In a sense, we were lucky here that the intended 
property corresponds to number ranges 1–5  and 6–7.
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Simple enumeration types

• So let us try to instead express on which days of the week 
there would have been an exercise session in the ProPa
course.

• The answer this time is not a simple arithmetic comparison 
like d < 6, but we can for example implement:

exerciseDay :: Integer -> Bool
exerciseDay 3 = False
exerciseDay 6 = False
exerciseDay 7 = False
exerciseDay _ = True

• In either case, what if we call workday or exerciseDay with 
an input like 12?
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Simple enumeration types

• Alternative approach, explicit new values:

data Day
= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

• Now:

exerciseDay :: Day -> Bool
exerciseDay Wednesday = False
exerciseDay Saturday  = False
exerciseDay Sunday    = False
exerciseDay _ = True

… and it is impossible to pass illegal inputs (like 12th day).
• Terminology: type constructors and data constructors.
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Simple enumeration types

• In addition to excluding absurd inputs, we get more useful 
exhaustiveness (and also redundancy) checking.

• For example, remember the game level example:

level :: (Integer, Integer) -> Integer

aTile :: Integer -> Picture
aTile 1 = block
aTile 2 = water
aTile 3 = pearl
aTile 4 = air
aTile _ = blank

• Imagine that we introduce a new kind of tile, produce its new 
“number code” inside the level-function, but forget to also 
handle it in the aTile-function. No compiler warning!
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Simple enumeration types

If we had instead introduced a new type:
data Tile = Blank | Block | Pearl | Water | Air

and used level :: (Integer, Integer) -> Tile

and: aTile :: Tile -> Picture
aTile Blank = blank
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air   = air

then adding another value to data Tile could not go 
unnoticed in aTile.
The compiler would actually warn us if we forgot to handle the 
new value there!
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General algebraic data types

• Going beyond simple enumeration types, algebraic data 
types can encapsulate additional values in the alternatives.

• That is, the data constructors can take arguments.
• For example:

data Date = Day Integer Integer Integer
data Time = Hour Integer
data Connection = Train Date Time Time

| Flight String Date Time Time

• A possible value of type Connection:

Train (Day 20 04 2011) (Hour 11) (Hour 14)
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General algebraic data types

• Computation on such types is via pattern-matching:

travelTime :: Connection -> Integer

travelTime (Train _ (Hour d) (Hour a))
= a - d + 1

travelTime (Flight _ _ (Hour d) (Hour a))
= a - d + 2

• At the same time, the data constructors are also normal 
functions, for example:

Day :: Integer -> Integer -> Integer -> Date

Train :: Date -> Time -> Time -> Connection

fmidue.github.io/ProPa-Slides

137

Recursive types

• Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

• Values of this type:

Zero, Succ Zero, Succ (Succ Zero), …

• Computation by recursive function definitions:

add :: Nat -> Nat -> Nat
add Zero     m = m
add (Succ n) m = Succ (add n m)
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Recursive types

• With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree

• Values: Leaf, Node Leaf 2 Leaf, …

• Computation:

height :: Tree -> Integer
height Leaf
= 0

height (Node left _ right)
= 1 + max (height left) (height right)
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Polymorphism in algebraic data types

Just like functions, algebraic data types can be 
polymorphic:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

height :: Tree a -> Integer
height Leaf
= 0

height (Node left _ right)
= 1 + max (height left) (height right)
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Polymorphism in algebraic data types

• Another example, from the standard library:

data Maybe a = Nothing | Just a

• Popular for functions that would otherwise be partial.
• Such as also in a re-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile

aTile :: Tile -> Picture
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air   = air
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Persistency of data structures

• Note that, just as any other data in Haskell, values of 
algebraic data types are immutable.

• For example, we do not change any tree in a function like 
this:

insert :: Integer -> Tree Integer
-> Tree Integer

insert n Leaf = Node Leaf n Leaf
insert n tree@(Node left m right)

| n < m = Node (insert n left) m right
| n > m = Node left m (insert n right)
| otherwise = tree

• Discuss what this means …
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Another example data structure

• If Haskell did not yet have a list type, we could 
implement one ourselves:

data List a = Nil | Cons a (List a)

• Example value: Cons 1 (Cons 2 Nil) :: List Int

• Computation:

length :: List a -> Int
length Nil           = 0
length (Cons _ rest) = 1 + length rest
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Lists as just another algebraic data type

• In fact, modulo special syntax, that is exactly what 
Haskell lists are:

data [a] = [] | (:) a [a]

• So, for example, [1,2] is simply 1:(2:[]), which 
thanks to right-associativity of “:” can also be written 
as 1:2:[].

• Functions on lists can then, of course, also be defined 
using pattern-matching.
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Pattern-matching on lists

Some example functions:
length :: [a] -> Int
length [] = 0
length (_:rest) = 1 + length rest

append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

head :: [a] -> a
head (x:_) = x

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []
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Pattern-matching on lists

• Note how clever arrangement of cases/equations can 
make function definitions more succinct.

• For example, we might on first attempt have defined 
zip as follows:

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

• But the version from the previous slide is equivalent.
• Both versions also work with infinite lists, btw.
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Higher-order examples

Also, as another example of a function we have used:
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

And indeed related:
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap _ Leaf = Leaf
treeMap f (Node left x right)
= Node (treeMap f left)

(f x)
(treeMap f right)
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Higher-order examples

• Also remember the function

foldl1 :: (a -> a -> a) -> [a] -> a

which puts a (left-associative) function/operator 
between all elements of a non-empty list.

• It is a member of a whole family of related functions, 
the most prominent of which is foldr, defined thus:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ c [] = c
foldr f c (x:xs) = f x (foldr f c xs)
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Evaluation by pattern-matching

• Ultimately, pattern-matching is what drives (lazy) 
evaluation in Haskell.

• For example, let us consider how the expression

head (tail (f [3, 3 + 1]))

is evaluated, given the following function definitions 
(and the known head and tail functions):

f :: [Int] -> [Int] g :: Int -> Int
f [] = [] g 3 = g 4
f (x:xs) = g x : f xs g n = n + 1
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Explicit case-expressions

• Pattern-matching is not restricted to the left-hand sides of 
function definitions, it can also occur inside expressions, 
using the case-keyword.

• For example, instead of something like this:

if maybeThing == Nothing
then … something …
else … something else, using fromJust maybeThing …

we can (and would usually prefer to) write this:

case maybeThing of
Nothing    -> … something …
Just thing -> … something else, directly using thing …
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Binding of variables

• Pattern-matching always binds variable names that occur in 
patterns, possibly shadowing existing things of same name.

• That sometimes leads to confusion for beginners, such as 
why it does not work to write a function like the following 
one (given the existence of red :: Color etc., imported 
from CodeWorld):

primaryColor :: Color -> Bool
primaryColor red   = True
primaryColor green = True
primaryColor blue  = True
primaryColor _ = False
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Input / Output
“In short, Haskell is the world’s finest imperative 
programming language.” 

Simon Peyton Jones
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Input / Output in Haskell, general approach

• Even in declarative languages, there should be some 
(disciplined) way to embed “imperative” commands like 
“print something to the screen”.

• In pure functions, no such interaction with the operating 
system / user / … is possible.

• And clearly it should not be, since it would defy referential 
transparency.

• But there is a special do-notation in Haskell that enables 
interaction, and from which one can call “normal” functions.

• All the features and abstraction concepts (higher-order, 
polymorphism, …) of Haskell remain available even in and 
with do-code.
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Input / Output in Haskell, very simple example

• Getting two numbers from the user and then printing 
some value computed from them to the screen:

main :: IO ()
main = do n <- readLn

m <- readLn
print (prod [n..m])

prod :: [Integer] -> Integer
prod [] = 1
prod (x:xs) = x * prod xs

• Note the (apparent) type inference on n and m.

fmidue.github.io/ProPa-Slides



156

Input / Output in Haskell, the principles

• There is a predefined type constructor IO, such that for 
every type like Int, Tree Bool, [(Int,Bool)] etc., 
the type IO Int, IO (Tree Bool), … can be built.

• The interpretation of a type IO a is that elements of 
that type are not themselves concrete values, but 
instead are (potentially arbitrarily complex) sequences 
of input and output operations, and computations 
depending on values read in, by which ultimately a 
value of type a is created.

• An (independently executable) Haskell program overall 
always has an “IO type”, usually main :: IO ().
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Input / Output in Haskell, the principles

• To actually create “IO values”, there are certain 
predefined primitives (and one can recognize their IO-
related character based on their types).

• For example, there are getChar :: IO Char and 
putChar :: Char -> IO ().

• Also, for multiple characters, getLine :: IO String
and putStr, putStrLn :: String -> IO ().

• More abstractly, for any type for which Haskell knows 
(or was instructed) how to convert from or to strings, 
readLn :: Read a => IO a for input as well as 
print :: Show a => a -> IO () for output.
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Input / Output in Haskell, the principles

To combine IO-computations (i.e., to build more complex 
action sequences based on the IO primitives), we can use the 
do-notation.

Its general form is: do cmd1
x2 <- cmd2
x3 <- cmd3
cmd4
x5 <- cmd5
...

where each cmdi has an IO type and to each xi (if present) a 
value of the type encapsulated in the cmdi will be bound (for 
use in the rest of the do-block), namely exactly the result of 
executing cmdi.

fmidue.github.io/ProPa-Slides



159

Input / Output in Haskell, the principles

• The do-block as a whole has the type of the last cmdn.
• For that last command, generally no xn is present.
• Often also useful (for example, at the end of a do-

block): a predefined function return :: a -> IO a
that simply yields its argument, without any actual IO
action.

• What is never ever, at all, possible or allowed is to 
directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the 
encapsulated value from an IO computation, i.e., to 
simply turn an IO a value into an a value.
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User defined “control structures”

• As mentioned, also in the context of IO-computations, all 
abstraction concepts of Haskell are available, particularly 
polymorphism and definition of higher-order functions.

• This can be employed for defining things like:

while :: a -> (a -> Bool) -> (a -> IO a)
-> IO a

while a p body = loop a
where loop x = if p x then do x' <- body x

loop x'
else return x

• Which can then be used thus:

while 0
(< 10)
(\n -> do {print n; return (n+1)})
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Prolog Basics
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Prolog in simplest case: facts and queries

• A kind of data base with a number of facts:

• Queries:

woman(mia).

woman(jody).

woman(yolanda).

playsAirGuitar(jody).

?- woman(mia).

true.

?- playsAirGuitar(jody).

true.

?- playsAirGuitar(mia).

false.

?- playsAirGuitar(vincent).

false.

?- playsPiano(jody).

false.

The dot is essential!

or an error message
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Facts + simple implications

• Queries:

happy(yolanda).

listens2Music(mia).

listens2Music(yolanda) :- happy(yolanda).

playsAirGuitar(mia) :- listens2Music(mia).

playsAirGuitar(yolanda) :- listens2Music(yolanda).

?- playsAirGuitar(mia).

true.

?- playsAirGuitar(yolanda).

true.

“if”

Head Body

happy(yolanda)

 listens2Music(yolanda)

 playsAirGuitar(yolanda)

because of:
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More complex rules

• Queries:

• Alternative notation:

happy(vincent).

listens2Music(butch).

playsAirGuitar(vincent) :- listens2Music(vincent), 

happy(vincent).

playsAirGuitar(butch) :- happy(butch).

playsAirGuitar(butch) :- listens2Music(butch).

?- playsAirGuitar(vincent).

false.

?- playsAirGuitar(butch).

true.

“and”

Alternatives

...

playsAirGuitar(butch) :- happy(butch); 

listens2Music(butch).

“or”
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Relations, and more complex queries

• Queries:

woman(mia).

woman(jody).

woman(yolanda).

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

loves(vincent,vincent).

?- woman(X).

X = mia ;

X = jody ;

X = yolanda.

?- loves(vincent,X).

X = mia ;

X = vincent.

?- loves(vincent,X), woman(X).

X = mia ;

false.

multi-ary (concretely, binary) 

predicate

semicolon entered by user
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Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z).

?- jealous(marsellus,X).

X = vincent ;

X = marsellus ;

false.

?- jealous(X,_).

X = vincent ;

X = vincent ;

X = marsellus ;

X = marsellus ;

X = mia.

anonymous variable
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Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

X = vincent ;

false.

?- jealous(X,_).

X = vincent ;

X = marsellus ;

false.

?- jealous(X,Y).

X = vincent,

Y = marsellus ;

X = marsellus,

Y = vincent ;

false.

important that at end
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Some observations on variables

• Variables in rules and in queries are independent from each other.

• Within a rule or a query, the same variables represent the same objects.

• But different variables do not necessarily represent different objects.

• It is possible to have several occurrences of the same variable in a rule’s head!

• In a rule’s body there can be variables that do not occur in its head!

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

X = vincent ;

false.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:

if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

???

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:

if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Or, for arbitrary (but fixed) X , Y:

for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

• Logically equivalent, for arbitrary (but fixed) X , Y:

if for any choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 

then also holds: jealous(X,Y)

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Operationalisation?

Specification (program) 

relation definitions

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt,X) 

⇝ …

⇝ …

⇝ …

⇝ …

⇝ X = paul ;  X = hans

Input:  a query

Output:  variable substitution(s)

(repeated) resolution

fmidue.github.io/ProPa-Slides

Principle:  reduction to subproblems

Programming Paradigms 15

. .

Operationalisation in Prolog (1)

istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,V)

matching/

parameter

passing

1st reduction

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).
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. . .

Operationalisation in Prolog (2)

.istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/

parameter

passing

2nd reduction

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istVaterVon(fritz,E)

Principle:  reduction to subproblems, where new subqueries are found from left to right!



fmidue.github.io/ProPa-Slides Programming Paradigms 17

. .

Operationalisation in Prolog (3)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/

parameter

passing

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istVaterVon(fritz,paul)

E = paul

return of

result

parameter

Principle:  reduction to subproblems
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Operationalisation in Prolog (4)

• Prolog always looks for matching rules or facts from top to bottom in the 

program.

• Since a relation generally is not a unique mapping, further answers for a (sub)query

may exist. Prolog finds those using backtracking:

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

subquery: istVaterVon(fritz,E)

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

re-try: istVaterVon(fritz,E)

position of last

solution – that is where

search continues

solution:

E = paul

solution:

E = paul;

E = hans
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. .

Operationalisation in Prolog (5)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/

parameter

passing

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istVaterVon(fritz,hans)

E = hans

return of

result

parameter

Principle:  reduction to subproblems
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. .

Operationalisation in Prolog (6)

The backtracking also concerns further matching rules:

. .

istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,M)

matching/

parameter

passing

3rd reduction

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istMutterVon(fritz,E)

Failure!
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).

?- istVaterVon(fritz, X).

?- .X = paul:

Compare (within a Prolog system): use of ?- trace.
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).

?- istVaterVon(fritz, X).

?- .

?- .

X = paul:

X = hans:

Compare (within a Prolog system): use of ?- trace.
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).

?- istVaterVon(fritz, X).

?- .

?- .

?- istVaterVon(kurt, M), istMutterVon(M, X).

?- istMutterVon(fritz, X).

X = paul:

X = hans:

Failure!

Compare (within a Prolog system): use of ?- trace.
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Syntactical ingredients of Prolog
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Syntax / notions in Prolog

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-

istVaterVon(G,V), istVaterVon(V,E).

istGrossvaterVon(G,E) :-

istVaterVon(G,M), istMutterVon(M,E).

?- istGrossvaterVon(kurt,paul).

?- istGrossvaterVon(kurt,fritz).

?- istGrossvaterVon(kurt,E).

?- istGrossvaterVon(G,paul).

rules

literal

queries

facts

clauses

conjunction

implication

predicate constant

variable
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Syntactical objects in Prolog

• To build clauses, Prolog uses different pieces:

- constants ( numbers, atoms – mainly lowercase identifiers, …)

- variables ( X,Y, ThisThing, _, _G107…) 

- operator terms ( … 1 + 3 * 4 …)

- structures ( date(27,11,2007), person(fritz, mueller), …

composite, recursive, “infinite”, …)

• Note: Prolog has no type system!
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Syntactical objects in Prolog

Structures in Prolog

• Structures represent objects that are made up of other objects (like trees and subtrees).

• Example:

• Through this, modelling of essentially “algebraic data types” – but not actually typed. 
So, person(1,2,'a') would also be a legal structure.

• Arbitrary nesting depth allowed – in principle infinite. 

person(fritz, mueller, date(27,11,2007))

functor

substructure

functors: person/3, date/3 (notation for arity)

must be an atom
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Syntactical objects in Prolog

• There is a predefined “list type” as recursive data structure:

[1,2,a]  .(1,.(2,.(a,[])))  [1|[2,a]]  [1,2|[a]]  [1,2|.(a,[])]

• Character strings are represented as lists of ASCII-Codes:

"Prolog" =  [80, 114, 111, 108, 111, 103]

=  .(80,  . (114,  . (111,  . (108,  . (111,  . (103, [ ])))))

Predefined syntax for special structures:

Operators:

• Operators are functors/atoms made from symbols and can be written infix.

• Example: in arithmetic expressions

• Mathematical functions are defined as operators.

• is to be read as this structure:1 + 3 * 4 +(1,*(3,4))
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Syntactical objects in Prolog

Collective notion “terms”:

• Terms are constants, variables or structures:

fritz

27

MM

[europe, asia, africa | Rest]

person(fritz, Lastname, date(27, MM, 2007)) 

• A ground term is a term that does not contain variables:

person(fritz, mueller, date(27, 11, 2007)) 
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More Prolog examples
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Simple example for working with data structures

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

data Nat = Zero | Succ Nat 

add :: Nat → Nat → Nat

add Zero x = x

add (Succ x)  y = Succ (add x y)

?- add(s(0),s(0),s(s(0))).

true.

?- add(s(0),s(0),N).

N = s(s(0)) ;

false.

• Recall, in Haskell:
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Systematic connection/derivation?

add(0,X,X).

add Zero x = x

• Essential difference Haskell/Prolog:

Functions                    vs.                 Predicates/Relations

f x y = z           “corresponds to” p(X,Y,Z).

• First a somewhat naïve attempt to exploit this correspondence:

add (Succ x)  y = Succ (add x y)

add(Zero, x, x)

add(Succ x, y, Succ (add x y))

???
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add (Succ x)  y = Succ (add x y)
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Systematic connection/derivation?

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

add(Succ x, y, Succ z)    if   add(x, y, z)

add (Succ x)  y = Succ z    where z = add x y

• Essential difference Haskell/Prolog:

Functions                    vs.                 Predicates/Relations

f x y = z           “corresponds to” p(X,Y,Z).

• Systematically avoiding nested function calls:
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On the flexibility of Prolog predicates

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

?- add(N,M,s(s(0))).

N = 0,

M = s(s(0)) ;

N = s(0),

M = s(0) ;

N = s(s(0)),

M = 0 ;

false. 

?- add(N,s(0),s(s(0))).

N = s(0) ;

false.

?- add(N,M,O). ???
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On the flexibility of Prolog predicates

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X). 

?- sub(s(s(0)),s(0),N).

N = s(0) ;

false.

?- sub(N,M,s(0)).

N = s(M) ;

false.

fmidue.github.io/ProPa-Slides Programming Paradigms 36

Another example

Computing the length of a list in Haskell:

length []      =  0

length (x:xs)  =  length xs + 1 

Computing the length of a list in Prolog:

length([],0).

length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).

Res = 3.

?- length(List,3).

List = [_G331, _G334, _G337]

list with 3 arbitrary 

(variable) elements
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Arithmetics vs. symbolic operator terms

Caution: If instead of:

we use:

then:

length([],0).

length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).

Res = 0+1+1+1.

?- length(List,3).

false.

?- length(List,0+1+1+1).

List = [_G331, _G334, _G337].

length([],0).

length([X|Xs],M+1) :- length(Xs,M).
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An example corresponding to several nested calls

partition :: Int → [Int] → ([Int], [Int])

…

quicksort [ ]      =  [ ]

quicksort (h : t) =  quicksort l1 ++ h : quicksort l2

where (l1, l2) = partition h t

quicksort [ ]      =  [ ]

quicksort (h : t) =  ls ++ h : quicksort l2

where (l1, l2) = partition h t

ls = quicksort l1

quicksort [ ]      =  [ ]

quicksort (h : t) =  ls ++ h : lg

where (l1, l2) = partition h t

ls = quicksort l1

lg = quicksort l2

quicksort [ ]      =  [ ]

quicksort (h : t) =  list

where (l1, l2) = partition h t

ls = quicksort l1

lg = quicksort l2

list = ls ++ h : lg

quicksort([], []). 

quicksort([H|T], List) :-

partition(H, T, L1, L2), 

quicksort(L1, LS), 

quicksort(L2, LG), 

append(LS, [H|LG], List).

lesson: “inner subexpressions first”
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Declarative semantics of Prolog
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Declarative semantics of Prolog

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

Logical interpretation:

( X. add(0,X,X))

 ( X, Y, Z. add(X,Y,Z)   add(s(X),Y,s(Z)))

To give meaning to such formulas, the study of logics uses models:

− starting from a set of mathematical objects

− interpretation of constants (like “0”) as elements of the above set,

and of functors (like “s(…)”) as functions thereover

− interpretation of predicates (like “add(…)”) as relations between objects

− assignment of truth values to formulas according to certain rules

− consideration only of interpretations that make all given formulas true

(these specific interpretations are called models)

Semantics of a program would be given by all statements/relationships that hold in all

models for the program.

What is the “mathematical” meaning/semantics of a Prolog program?
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Herbrand models

Important: There is always a kind of “universal model”.

Idea: Interpretation as simple as possible, namely purely syntactic.

Neither functors nor predicates really “do” anything.

So: set of objects =  all ground terms (over implicitly given signature)

interpretation of functors =  syntactical application on terms

interpretation of predicates =  some set of applications of predicate symbols

on ground terms

Example:

Signature: 0 (of arity 0), s (of arity 1)

Herbrand universe: {0, s(0), s(s(0)), s(s(s(0))), …} (without predicate symbols!)

the Herbrand base: {add(0,0,0), add(0,0,s(0)), add(0,s(0),0), …}

(all applications of predicate symbols on terms from Herbrand universe)

the Herbrand universe

a Herbrand interpretation

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).
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Smallest Herbrand model

Can one compute, in a constructive fashion, the smallest (via the subset relation) 

Herbrand interpretation that is a model?

Yes, using the “immediate consequence operator”: TP

Definition:  TP takes a Herbrand interpretation I and produces all ground literals
(elements of the Herbrand base)  L0 for which L1, L2, ..., Ln
exist in I such that L0 :- L1, L2, ..., Ln is a complete instantiation

(i.e., no variables left) of any of the given program clauses (facts/rules).

The smallest Herbrand model is obtained as fixpoint/limit of the sequence

 ,  TP() , TP(TP()) , TP(TP(TP())) , …
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Smallest Herbrand model

On the example:

TP() =   {add(0,0,0), add(0,s(0),s(0)), add(0,s(s(0)),s(s(0))), …}

TP(TP()) =   TP()  {add(s(0),0,s(0)), add(s(0),s(0),s(s(0))),  

add(s(0),s(s(0)),s(s(s(0)))), …}

TP(TP(TP()))   =   TP(TP())  {add(s(s(0)),0,s(s(0))),  

add(s(s(0)),s(0),s(s(s(0)))),  

add(s(s(0)),s(s(0)),s(s(s(s(0))))), …}

…

In the limit: { add(si(0),sj(0),si+j(0)) |  i , j ≥ 0 }

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).
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For which kind of Prolog programs can one work with the TP -semantics?
• no arithmetics, no is

• no \=, no not

• generally, none of the “non-logical” features (not introduced in the lecture)

But for example programs like this (and would also work for mutual recursion):

TP() =   {add(0,0,0), add(0,s(0),s(0)), …}  {mult(0,0,0),  

mult(0,s(0),0), …}  {mult(s(0),0,0), …}

TP(TP()) =   TP()  {add(s(0),0,s(0)), add(s(0),s(0),s(s(0))), …}

 {mult(s(0),s(0),s(0))}
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Applicability of the semantics based on Herbrand models

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),s(Y),s(Z)) :- mult(X,s(Y),U), add(Y,U,Z). 
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TP() =   {add(0,0,0), add(0,s(0),s(0)), …}  {mult(0,0,0),  

mult(0,s(0),0), …}  {mult(s(0),0,0), …}

TP(TP()) =   TP()  {add(s(0),0,s(0)), add(s(0),s(0),s(s(0))), …}

 {mult(s(0),s(0),s(0))}

TP(TP(TP()))   =   TP(TP())  {add(s(s(0)),0,s(s(0))), …}

 {mult(s(0),s(s(0)),s(s(0))),

mult(s(s(0)),s(0),s(s(0)))}

TP
4()   =   TP

3()  {add(s3(0),0,s3(0)), add(s3(0),s(0),s4(0)), …}

 {mult(s(0),s3(0),s3(0)), mult(s2(0),s2(0),s4(0)),

mult(s3(0),s(0),s3(0))}
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Applicability of the semantics based on Herbrand models

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),s(Y),s(Z)) :- mult(X,s(Y),U), add(Y,U,Z). 
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Applicability of the semantics based on Herbrand models

The declarative semantics:

• is only applicable to certain, “purely logical”, programs

• does not directly describe the behaviour for queries containing variables

• is mathematically simpler than the still to be introduced operational semantics

• can be related to that operational semantics appropriately

• is insensitive against changes to the order of, and within, facts and rules (!)
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Operational semantics of Prolog
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Motivation: Observing some not so nice (not so “logical”?) effects

direct(frankfurt,san_francisco).

direct(frankfurt,chicago).

direct(san_francisco,honolulu).

direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).

connection(X, Y) :- direct(X, Z), connection(Z, Y).

?- connection(frankfurt,maui).

true.

?- connection(san_francisco,X).

X = honolulu ;

X = maui ;

false.

?- connection(maui,X).

false.
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Motivation: Observing some not so nice (not so “logical”?) effects

direct(frankfurt,san_francisco).

direct(frankfurt,chicago).

direct(san_francisco,honolulu).

direct(honolulu,maui).

connection(X, Y) :- connection(X, Z), direct(Z, Y). 

connection(X, Y) :- direct(X, Y). 

?- connection(frankfurt,maui).

ERROR: Out of local stack

• Apparently, the implicit logical operations are not commutative.

• So concerning program execution, there must be more than the purely logical reading.
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Somewhat more subtle…

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X). 

?- sub(s(s(0)),s(0),N).

N = s(0) ;

false.

?- sub(N,M,s(0)).

N = s(0),

M = 0 ;

N = s(s(0)),

M = s(0) ;

add(X,0,X).

add(X,s(Y),s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X). 

…

?- sub(N,M,s(0)).

N = s(M) ;

false.

So the choice/treatment of 

the order of arguments in 

definitions affects the 

quality of results.
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… and (thus) sometimes less flexibility than desired

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

The nicely descriptive solution:

works very well for various kinds of queries:

But there are also “outliers”:

?- mult(s(s(0)),s(s(s(0))),N).

N = s(s(s(s(s(s(0)))))).

?- mult(s(s(0)),N,s(s(s(s(0))))).

N = s(s(0)) ;

false.

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

abort otherwise infinite search

We say that  mult supports the 

“call modes”  mult(+X,+Y,?Z)

and  mult(+X,?Y,+Z)

… but not  
mult(?X,?Y,+Z).
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… and (thus) sometimes less flexibility than desired

Whereas with just addition:

the analogous call mode seemed to work pretty well:

1. So why the difference?

2. And what can we do to also let  mult function this way?

?- add(N,M,s(s(s(0)))).

N = 0,

M = s(s(s(0))) ;

N = s(0),

M = s(s(0)) ;

N = s(s(0)),

M = s(0) ;

N = s(s(s(0))),

M = 0 ;

false.

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

Indeed, add supports 

all call modes, even 
add(?X,?Y,?Z).
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Moreover, caution needed when using/positioning negative literals

loves(vincent,mia).

loves(marsellus,mia).

loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).

false.

?- jealous(X,_).

false.

?- jealous(X,Y).

false.

And now it gets really “strange”:

...

jealous(X,Y) :- X \= Y, loves(X,Z), loves(Y,Z).

small change

Whereas before the 

small change, we got 

meaningful results for 

these queries!
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Operational semantics of Prolog

To investigate all these phenomena, we have to consider the concrete execution 

mechanism of Prolog.

Ingredients for this discussion of the operational semantics, considered in what 

follows:

1. Unification

2. Resolution

3. Derivation trees
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Unification
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Analogy to Haskell: Pattern matching

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

?- add(s(s(0)),s(0),s(s(s(0)))).

?- add(s(0),s(0),s(s(0))).

?- add(0,s(0),s(0)).

?- .

true.
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But what about “output variables”?

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

?- add(s(s(0)),s(0),N).

?

In some sense, we need a form of “bidirectional pattern matching”, that can also 

combine and propagate variable bindings.
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Equality of terms (1)

• Checking equality of ground terms:

europe = europe ? yes

person(fritz,mueller) = person(fritz,mueller) ? yes

person(fritz,mueller) = person(mueller,fritz) ? no

5 = 2 ? no

5 = 2 + 3 ? no

2 + 3 = +(2, 3) ? yes

 Equality of terms means structural equality.

Terms are not “evaluated” before a comparison!
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Equality of terms (2)

• Checking equality of terms with variables:

person(fritz, Lastname, datum(27, 11, 2007))

= person(fritz, mueller, datum(27, MM, 2007)) ? 

• For a variable, any term may be substituted:

- in particular mueller for Lastname and 11 for MM.

- After this substitution both terms are equal.
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Equality of terms (3)

Which variables have to be substituted how, in order to make the terms equal?

As a reminder, list syntax:

date(1, 4, 1985) = date(1, 4, Year) ?

date(Day, Month, 1985) = date(1, 4, Year) ?

a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,g(H,i,K))) ?

X = Y + 1 ?  

[[the, Y]|Z] = [[X, dog], [is, here]] ?

And what about:
p(X) = p(q(X)) ?

“occurs check” (implementation detail)

[1,2,a] = [1|[2,a]] = [1,2|[a]] = [1,2|.(a,[])] = .(1,.(2,.(a,[])))
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Equality of terms (4)

Some further (problematic) cases:

loves(vincent, X) = loves(X, mia) ?

loves(marsellus, mia) = loves(X, X) ?

a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,p(H,i,K))) ?  

p(b,b) = p(X) ?  

…
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Substitution:

• Replacing variables by other variables or other kinds of terms

(constants, structures, …)

• Extended to a function which uniquely maps each term to a new term, where

the new term differs from the old term only by the replacement of variables.

• Notation: U = {Lastname / mueller, MM / 11}

• This substitution U changes only the variables  Lastname and  MM (in context),

everything else stays unchanged.

• U(person(fritz, Lastname, datum(27, 11, 2007)))  

==   person(fritz, mueller, datum(27, 11, 2007))
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Unification concepts, somewhat formally (1)
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Unification concepts, somewhat formally (2)

• Unifier:

- substitution that makes two terms equal

- e.g., application of the substitution U = { Lastname/mueller, MM/11 } :

U(person(fritz,Lastname,date(27,11,2007)))  

== U(person(fritz,mueller,date(27,MM,2007)))

• Most general unifier:

- unifier that leaves as many variables as possible unchanged,

and does not introduce specific terms where variables suffice

- Example: date(DD,MM,2007) and date(D,11,Y)

- U1 = {  DD/27, D/27, MM/11, Y/2007 }

- U2 = {  DD/D, MM/11, Y/2007 }

• Prolog always looks for a most general unifier.



✓
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Unification
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We will now skip over some slides with a description of a concrete algorithm for 

computing most general unifiers.

The main reason is that the lecture “Logik” has already introduced an algorithm for 

this purpose, and it has been practiced in that course’s exercises.

And for our consideration of the operational semantics of Prolog you do not need to 

learn a specific unification algorithm by heart, you only need to be able to determine 

what the most general unifier for a pair of terms is.

(We will encounter various examples.)

Aside: The issue of the “occurs check” will not come up in any examples considered 

in lecture, exercises or exam (though it is relevant in Prolog implementations).
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Unification – Computing a most general unifier

Input: two terms T1 and T2   (in general possibly containing common variables)

Output: a most general unifier U for T1 and T2 in case T1  and T2 are unifiable,

otherwise failure

Algorithm:

1. If T1 and T2 are the same constant or variable,

then U = 

2. If T1 is a variable that does not occur in T2,

then U = {T1 / T2} 

3. If T2 is a variable that does not occur in T1,

then U = {T2 / T1} 

“occurs check”
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Unification – Computing a most general unifier

Algorithm (cont.):

4. If T1 = f(T1,1,...,T1,n) and T2 = f(T2,1,...,T2,n) are structures with the same

functor and the same number of components, then

1.      Find a most general unifier U1 for T1,1 and T2,1

2.      Find a most general unifier U2 for U1(T1,2) and U1(T2,2)

…

n. Find a most general unifier Un for

Un-1(...(U1(T1,n)...) and Un-1(...(U1(T2,n))...)

If all these unifiers exist, then

U = Un ○ Un-1 ○ ... ○ U1   (function composition of the unifiers,

always applied recursively along term structure)

5. Otherwise: T1 and T2 are not unifiable.
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Unification algorithm – Examples

date(1, 4, 1985) = date(1, 4, Year) ?

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for 1 and 1

 same constants, thus U1 = 

2.      Find a most general unifier U2 for U1(4) and U1(4)

 same constants, thus U2 = 

3. Find a most general unifier U3 for U2(U1(1985)) and U2 (U1(Year))

 constant vs. variable, thus U3 = {Year /1985} 

A most general unifier overall is:

U = U3 ○ U2 ○ U1 = {Year /1985}
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Unification algorithm – Examples

loves(marsellus, mia) = loves(X, X) ?

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for  marsellus and  X

 constant vs. variable, thus U1 = {X /marsellus}

2.      Find a most general unifier U2 for U1(mia) = mia and U1(X) = marsellus

 different constants, hence U2 does not exist!

Consequently, also no unifier exists for the original terms! 
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Unification algorithm – Examples

d(E,g(H,J)) = d(F,g(H,E)) ?  

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for E and F

 different variables, thus U1 = {E/F} 

2. Find a most general unifier U2 for U1(g(H,J)) and U1(g(H,E))

g(H,J) = g(H,F) ?

 Structures with the same functor, same number of components, hence:

- Find a most general unifier U2,1 for H and H

 same variables, thus U2,1 = 

- Find a most general unifier U2,2 for U2,1(J) and U2,1(F)

 different variables, thus U2,2 = {F/J}

U2 = U2,2 ○ U2,1 = {F/J}

A most general unifier overall is:

U = U2 ○ U1 = {E/J , F/J}
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Relevance of the “occurs check”

As a reminder:

2.     If T1 is a variable that does not occur in T2,

then U = {T1 / T2} 

3.     If T2 is a variable that does not occur in T1,

then U = {T2 / T1} 

“occurs check”

X = q(X) ?

So, for example:

 No unifier exists.

But in Prolog this check is actually not performed by default (in can be enabled 

in implementations, though)!
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Relevance of the “occurs check”

Structures with the same functor, same number of components, hence:

1. Find a most general unifier U1 for  X and q(X)

 variable vs. term, thus U1 = {X /q(X)}

U = U1 = {X /q(X)} !

p(X) = p(q(X))?

Without “occurs check”:

Although it actually is not true that U(p(X)) and U(p(q(X))) are equal!
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Resolution
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Resolution in Prolog (1)

Resolution (proof principle) – without variables

One can reduce proving the query

?- P, L, Q. (let L be a variable free literal and P and Q be sequences of such) 

to proving the query

?- P, L1, L2, ... , Ln, Q.

provided that  L :- L1, L2, ..., Ln. is a clause in the program (where n  0).

- The choice of the literal L and the clause to use are in principle arbitrary.

- If n = 0, then the query becomes smaller by the resolution step.
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Resolution in Prolog (2)

One can reduce proving the query

?- P, L, Q. (let L be a literal and P and Q be sequences of literals) 

to proving the query

?- U(P), U(L1), U(L2), ... , U(Ln), U(Q).

provided that: 

- there is a program clause  L0 :- L1, L2, ..., Ln. (where n  0),

with – just in case – renamed variables (so that there is no overlap with
those in P, L, Q),

- and U  is a most general unifier for L and L0.

Resolution – with variables
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Derivation trees
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Reminder: Motivation for considering operational semantics…

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

We wanted to understand why, for example, for

various kinds of queries/“call modes” work very well:

but others don’t:

?- mult(s(s(0)),s(s(s(0))),N).

N = s(s(s(s(s(s(0)))))).

?- mult(s(s(0)),N,s(s(s(s(0))))).

N = s(s(0)) ;

false.

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

abort otherwise infinite search
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Explicit enumeration of solutions

Exhaustive search:

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

?- add(N,M,s(s(0))). 

{N/0,M/s(s(0)),X/s(s(0))}

□

{N/s(X1),M/Y1,Z1/s(0)}

?- add(X1,Y1,s(0)). 

{X1/0,Y1/s(0),X2/s(0)}

□

{X1/s(X3),Y1/Y3,Z3/0}

?- add(X3,Y3,0). 

{X3/0,Y3/0,X4/0}

□

N=0, M=s(s(0))

N=s(0), M=s(0)

N=s(s(0)), M=0

Let us start with a simple example just for addition:
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1. Generate root node with query, remember it as still to be worked on.

2. As long as there are still nodes to be worked on:

- select left-most such node

- determine all facts/rules (with consistently renamed variables) whose head

is unifiable with the left-most literal in that node

- generate for each such fact/rule a (still to be worked on) successor node via

a resolution step

- arrange successor nodes from left to right according to the order of appearance of

the used facts/rules in the program (from top to bottom)

- annotate the unifier used in each case

- mark nodes as finished if they are empty or if their left-most literal is not unifiable

with any fact/rule head

- at successful nodes (the ones that are finished as empty), annotate the solution

(the composition of unifiers – as functions on terms – along the path from the root,

applied to all variables that occurred in the original query)
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Detailed description of the generation of derivation trees
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?- mult(X,Y,U),add(U,Y,s(0)).
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An example with infinite search

?- mult(N,M,s(0)). 

{X/0,Y/_1,U/0}

?- add(0,_1,s(0)).

{X/s(X2),Y/Y2,U/Z2}

?- mult(X2,Y2,U2),add(U2,Y2,Z2),add(Z2,Y2,s(0)).

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

{N/s(X),M/Y,Z/s(0)}

{_1/s(0),X1/s(0)}

□

N=s(0), M=s(0)

{X2/0,Y2/_2,U2/0}

?- add(0,_2,Z2),add(Z2,_2,s(0)).

{X2/s(X3),Y2/Y3,U2/Z3}

?- ….

Grows ever longer!
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Experiment with changed order of literals

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U).

?- add(U,Y,s(0)),mult(X,Y,U).

?- mult(N,M,s(0)). 

{U/0,Y/s(0),X1/s(0)}

?- mult(X,s(0),0).

{N/s(X),M/Y,Z/s(0)}
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Experiment with changed order of literals

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U).

?- add(U,Y,s(0)),mult(X,Y,U).

?- mult(N,M,s(0)). 

{U/0,Y/s(0),X1/s(0)}

?- mult(X,s(0),0).

{U/s(X3),Y/Y3,Z3/0}

?- add(X3,Y3,0),mult(X,Y3,s(X3)).

{N/s(X),M/Y,Z/s(0)}

{X/0,_1/s(0)} {X/s(X2),Y2/s(0),Z2/0}

?- add(U2,s(0),0),mult(X2,s(0),U2).□

N=s(0), 

M=s(0)

?- mult(X,0,s(0)).

{X3/0,Y3/0,X4/0}

?- add(U5,0,s(0)),mult(X5,0,U5).

{X/s(X5),Y5/0,Z5/s(0)}
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Experiment with changed order of literals

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U).

?- add(X3,Y3,0),mult(X,Y3,s(X3)).

?- mult(X,0,s(0)).

{X3/0,Y3/0,X4/0}

?- add(U5,0,s(0)),mult(X5,0,U5).

{X/s(X5),Y5/0,Z5/s(0)}

?- add(X6,0,0),mult(X5,0,s(X6)).

{U5/s(X6),Y6/0,Z6/0}

?- mult(X5,0,s(0)).

{X6/0,X7/0}

Does not look good!
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Input: query and program,

for example

mult(N,M,s(0)) and:

Output: tree, generated by following steps:

1. Generate root node with query, remember it as

still to be worked on.

2. As long as there are still nodes to be worked on:

- select left-most such node

- determine all facts/rules (with consistently

renamed variables) whose head is unifiable

with the left-most literal in that node

- generate for each such fact/rule a (still to be worked on)

successor node via a resolution step

- arrange successor nodes from left to right according to the order

of appearance of the used facts/rules in the program (from top to bottom)

- annotate the unifier used in each case
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Detailed description of the generation of derivation trees

?- add(U,Y,s(0)),mult(X,Y,U).

?- mult(N,M,s(0)). 

{N/s(X),M/Y,Z/s(0)}

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U). 

still to be worked on
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Detailed description of the generation of derivation trees

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U). 

?- add(U,Y,s(0)),mult(X,Y,U).

?- mult(N,M,s(0)). 

{N/s(X),M/Y,Z/s(0)}

2. As long as there are still nodes

to be worked on:

- select left-most such node

- determine all facts/rules (w. cons.

renamed variables) whose head is unifiable with the left-most literal in that node

- generate for each such fact/rule a (still to be worked on)

successor node via a resolution step

- arrange successor nodes from left to right according to the order

of appearance of the used facts/rules in the program (from top to bottom)

- annotate the unifier used in each case

{U/0,Y/s(0),X1/s(0)}

?- mult(X,s(0),0).

{U/s(X3),Y/Y3,Z3/0}

?- add(X3,Y3,0),mult(X,Y3,s(X3)).

still to be worked onstill to be worked on
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Detailed description of the generation of derivation trees

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U). 

2. As long as there are still nodes

to be worked on:

- select left-most such node

- determine all facts/rules (w. cons.

renamed variables) whose head is unifiable with the left-most literal in that node

- generate for each such fact/rule a (still to be worked on)

successor node via a resolution step

- arrange successor nodes from left to right according to the order

of appearance of the used facts/rules in the program (from top to bottom)

- annotate the unifier used in each case

- mark nodes as finished if they are empty (        )

or if their left-most literal is not unifiable with any fact/rule head (       )

{U/0,Y/s(0),X1/s(0)}

?- mult(X,s(0),0).

{U/s(X3),Y/Y3,Z3/0}

?- add(X3,Y3,0),mult(X,Y3,s(X3)).

{X/0,_1/s(0)} {X/s(X2),Y2/s(0),Z2/0}

?- add(U2,s(0),0),mult(X2,s(0),U2).□

□

still to be worked on
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Detailed description of the generation of derivation trees

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U). 

2. As long as there are still nodes

to be worked on:

- select left-most such node

- determine all facts/rules (w. cons.

renamed variables) whose head is unifiable with the left-most literal in that node

- generate for each such fact/rule a (still to be worked on)

successor node via a resolution step

- arrange successor nodes from left to right according to the order

of appearance of the used facts/rules in the program (from top to bottom)

- annotate the unifier used in each case

- mark nodes as finished if they are empty

or if their left-most literal is not unifiable with any fact/rule head

- at successful nodes, annotate the solution (the composition of unifiers along the

path from the root, applied to all variables that occurred in the original query)

?- mult(X,s(0),0). ?- add(X3,Y3,0),mult(X,Y3,s(X3)).

{X/0,_1/s(0)} {X/s(X2),Y2/s(0),Z2/0}

?- add(U2,s(0),0),mult(X2,s(0),U2).□N=s(0), 

M=s(0)

still to be worked on
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Back to the example: What to do?

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),mult(X,Y,U).

?- add(X3,Y3,0),mult(X,Y3,s(X3)).

?- mult(X,0,s(0)).

{X3/0,Y3/0,X4/0}

?- add(U5,0,s(0)),mult(X5,0,U5).

{X/s(X5),Y5/0,Z5/s(0)}

?- add(X6,0,0),mult(X5,0,s(X6)).

{U5/s(X6),Y6/0,Z6/0}

?- mult(X5,0,s(0)).

{X6/0,X7/0}

Does not look good!
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Attempt: introducing an extra test

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),Y\=0,mult(X,Y,U).

?- add(U,Y,s(0)),Y\=0,mult(X,Y,U).

?- mult(N,M,s(0)). 

{U/0,Y/s(0),X1/s(0)}

?- s(0)\=0,mult(X,s(0),0).

{U/s(X3),Y/Y3,Z3/0}

?- add(X3,Y3,0),Y3\=0,mult(X,Y3,s(X3)).

{N/s(X),M/Y,Z/s(0)}

{X/0,_1/s(0)} {X/s(X2),Y2/s(0),Z2/0}

?- add(U2,s(0),0),s(0)\=0,

mult(X2,s(0),U2).

□

N=s(0), 

M=s(0)

?- 0\=0,mult(X,0,s(0)).

{X3/0,Y3/0,X4/0}
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Only partial success

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(X),Y,Z) :- add(U,Y,Z),Y\=0,mult(X,Y,U).

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

N = s(s(s(s(0)))),

M = s(0) ;

false.

?- mult(s(0),0,0).

false.

New results found, old results lost!

fmidue.github.io/ProPa-Slides Programming Paradigms 90

Yet another “repair”

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),Y,Z) :- add(U,Y,Z),Y\=0,mult(X,Y,U). 

?- mult(s(0),0,0).

true.

Now this works:

?- mult(s(0),s(0),N).

N = s(0) ;

abort

But unfortunately (only noticed now):

otherwise infinite search

And it even works generally 
mult(?X,?Y,+Z).

So  mult(+X,+Y,?Z). 

does not anymore work.
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A new “infinity trap”

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),Y,Z) :- add(U,Y,Z),Y\=0,mult(X,Y,U). 

?- add(U,s(0),Z),s(0)\=0,mult(0,s(0),U).

?- mult(s(0),s(0),N). 

{U/0,X1/s(0),Z/s(0)}

?- s(0)\=0,mult(0,s(0),0).

{U/s(X2),Y2/s(0),Z/s(Z2)}

?- add(X2,s(0),Z2),s(0)\=0,mult(0,s(0),s(X2)).

{X/0,Y/s(0),N/Z}

{_1/s(0)}

□

N=s(0)

Does not look good!

?- add(U,s(0),Z).

U = 0, Z = s(0) ;

U = s(0), Z = s(s(0)) ;

...

?- add(s(0),U,Z).

Z = s(U).

important observation:

(see last lecture) 
vs.
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Exploiting commutativity

?- add(U,s(0),Z).

U = 0, Z = s(0) ;

U = s(0), Z = s(s(0)) ;

...

?- add(s(0),U,Z).

Z = s(U).
vs.

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),Y,Z) :- add(Y,U,Z),Y\=0,mult(X,Y,U). 

important observation:

(see last lecture) 
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Exploiting commutativity

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),Y,Z) :- add(Y,U,Z),Y\=0,mult(X,Y,U). 

?- add(s(0),U,Z),s(0)\=0,mult(0,s(0),U).

?- mult(s(0),s(0),N). 

{X/0,Y/s(0),N/Z}

□ N=s(0)

?- add(0,Y1,Z1),s(0)\=0,mult(0,s(0),Y1).

{X1/0,U/Y1,Z/s(Z1)}

?- s(0)\=0,mult(0,s(0),X2).

{Y1/X2,Z1/X2}

{_1/s(0),X2/0}
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Indeed a generally useful definition

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).

mult(s(_),0,0).

mult(s(X),Y,Z) :- add(Y,U,Z),Y\=0,mult(X,Y,U). 

?- mult(N,M,s(s(s(s(0))))).

N = s(0),

M = s(s(s(s(0)))) ;

N = s(s(0)),

M = s(s(0)) ;

N = s(s(s(s(0)))),

M = s(0) ;

false.

?- mult(s(0),s(0),N).

N = s(0).

?- add(X,0,X),not(mult(s(s(_)),s(s(_)),X)).

...

Now all call modes 

work well, except
mult(?X,?Y,?Z)!
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Conclusion

The operational semantics:

• reflects the actual Prolog search process, with backtracking

• makes essential use of unification and resolution steps

• enables understanding of effects like non-termination

• gives insight into impact of changes to the order of, and within, facts and rules
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Programming Paradigms

Negation in Prolog

fmidue.github.io/ProPa-Slides Programming Paradigms 97

Negation (1)

• Logic programming is primarily based on a positive logic.

A literal is provable if it can be reduced (possibly via several resolution steps)

to the validity of known facts.

• But Prolog also offers the possibility to use negation.

− However, Prolog negation is not fully compatible with the expected logical meaning.

− \+ Goal, or not(Goal),  is provable if and only if Goal is not provable.

Example: \+ member(4,[2,3]) is provable, since

member(4,[2,3]) is not provable, i.e., it 

exists a “finite failure tree”.

Caution:

(Negation does not yield variable bindings.)

?- member(X,[2,3]).   X = 2; X = 3.

?- \+ member(X,[2,3]).   false.

?- \+ \+ member(X,[2,3]).   true. 
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Negation (2)

• Why “finite failure tree”?

− We cannot, in general, show that from the clauses of a program a

certain negative statement follows.

− We can only show that a certain positive statement can not

be deduced. (negation as failure)

− Here, “show” means to attempt a proof of the positive statement but to fail.

− That any such attempt will necessarily fail (for some given positive statement)

can only be said with certainty if the search space is finite.

• Underlying assumption:

closed world assumption
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Negation (3)

Examples (without variables):

p :- p.

?- \+ p. 

?- p. 

?- p. ?- \+ p.

abort otherw. infinite search

p :- \+ q.

q.

q :- q.

?- \+ p. 

?- p. 

?- \+ q. 

?- \+ p.

true.

?- q. 

□ ?- q. 

□

□

…

…

One successful branch (for q) suffices

(to let \+ q fail).
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Negation (4)

Examples with variables:

human(marsellus).

human(vincent).

human(mia).

married(vincent,mia).

married(mia,vincent).

single(X) :- human(X), \+ married(X,Y).

?- single(X).

X = marsellus.

?- single(marsellus).

true.

?- single(vincent).

false.

human(marsellus).

human(vincent).

human(mia).

married(vincent,mia).

married(mia,vincent).

single(X) :- \+ married(X,Y), human(X).

?- single(X).

false.

?- single(marsellus).

true.

?- single(vincent).

false.
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Negation (5)

Examples with variables:

human(marsellus).

human(vincent).

human(mia).

married(vincent,mia).

married(mia,vincent).

single(X) :- human(X), \+ married(X,Y).

?- single(X). 

?- married(marsellus,Y1). 
□

?- human(X1), \+ married(X1,Y1). 

{X/X1}

?- \+ married(marsellus,Y1). 

{X1/marsellus} {X1/vincent}

X=marsellus

{X1/mia}
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Negation (6)

Examples with variables:

human(marsellus).

human(vincent).

human(mia).

married(vincent,mia).

married(mia,vincent).

single(X) :- \+ married(X,Y), human(X).

?- single(X). 

?- married(X1,Y1). 

?- \+ married(X1,Y1), human(X1). 

{X/X1}

□

{X1/vincent,Y1/mia}

□

{X1/mia,Y1/vincent}
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Negation (7)

Examples with variables:

human(marsellus).

human(vincent).

human(mia).

married(vincent,mia).

married(mia,vincent).

single(X) :- \+ married(X,Y), human(X).

?- single(marsellus). 

?- \+ married(marsellus,Y1), human(marsellus). 

{X1/marsellus}

?- married(marsellus,Y1). 
?- human(marsellus). 

□
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Negation (8)

Explanation from “logical perspective” :

Under the assumptions that X is originally unbound and by human(X)will always

be bound, this:

means:   X : human(X)   ( Y : married(X,Y))   single(X).

single(X) :- human(X), \+ married(X,Y). 

But under the same assumptions, this:

means:   X : ( X,Y : married(X,Y))  human(X)   single(X).

single(X) :- \+ married(X,Y), human(X). 
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Summary on Negation

• no real logical negation: instead, negation as failure

• proof search in “side branch”, does not bind variables to the outside

• can only be truly understood procedurally/operationally

• problems with attempting a declarative perspective: 

− not compositional

− sensitive against changes to the order of, and within, facts and rules

− TP -operator would be non-monotone

Potentielle Probleme mit Rekursion

Alte Beispielaufgabe:25

Given is an arbitrary database of facts about (true) lines between points in the plane, for
example:

l i n e ( a , b ) . l i n e ( c , b ) . l i n e (d , a ) .
l i n e (b , d) . l i n e (d , c ) . l i n e (d , e ) .

Implement predicates triangle with arity 3 and tetragon with arity 4, for the (true) triangles
and tetragons created by the lines in the database. A line or triangle or tetragon is “true” if no
two listed points are the same.

Also note that the line relation given above is not symmetric, even though lines between
points should conceptually be considered to be so.

Solution

c l i n e (X,Y) :− l i n e (X,Y) .
c l i n e (X,Y) :− l i n e (Y,X) .

t r i a n g l e (X,Y, Z) :− c l i n e (X,Y) , c l i n e (Y, Z) , c l i n e (Z ,X) .

t e t ragon (X,Y, Z ,U) :−
c l i n e (X,Y) , c l i n e (Y, Z) , c l i n e (Z ,U) , c l i n e (U,X) , X \= Z , Y \= U.

26

Define a Prolog predicate replicate /3 which corresponds to the Haskell function of the same
name, except that the numeric argument is expressed symbolically. For example, the query
replicate (s(s(s(0))) ,a ,[ a,a,a]) should be satisfied.

Solution

r e p l i c a t e (0 , , [ ] ) .
r e p l i c a t e ( s (X) ,Y, [ Y|Ys ] ) :− r e p l i c a t e (X,Y, Ys) .

27

Define a Prolog predicate dropEven/2 which relates any list with the same list, but every second
element removed. For example, the query dropEven([a,b,c,d ],[ a,c ]) should be satisfied.

Solution

dropEven ( [ ] , [ ] ) .
dropEven ( [X] , [X] ) .
dropEven ( [X, |Xs ] , [X|Ys ] ) :− dropEven (Xs , Ys) .

21

Lösungsversuch:

t r i a n g l e (X,Y, Z ) :− l i n e (X,Y) , l i n e (Y, Z ) , l i n e (Z ,X ) .

te t ragon (X, Y, Z ,U) :− l i n e (X,Y) , l i n e (Y, Z ) , l i n e (Z ,U) ,
l i n e (U,X) , X \= Z , Y \= U.
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Potentielle Probleme mit Rekursion

Um die „fehlenden“ (per Symmetrie) Fakten wie „ line (b,a)“ etc. zu
berücksichtigen, liegt folgende Ergänzung nahe:

l i n e (X,Y) :− l i n e (Y,X ) .

Allerdings ist das leider „zu rekursiv“ (bei Ausführung).

Besser hier, Einführung eines gesonderten Prädikates und dann:

s l i n e (X,Y) :− l i n e (X,Y ) .
s l i n e (Y,X) :− l i n e (X,Y ) .

t r i a n g l e (X,Y, Z ) :− s l i n e (X,Y) , s l i n e (Y, Z ) , s l i n e (Z ,X ) .

te t ragon (X, Y, Z ,U) :− s l i n e (X,Y) , s l i n e (Y, Z ) , s l i n e (Z ,U) ,
s l i n e (U,X) , X \= Z , Y \= U.

Lösung bestand hier also im Verzicht auf Rekursion.
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Potentielle Probleme mit Rekursion
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Spezielle Datenstruktur: Listen

Neben Konstanten und per Schachtelung von Datenkonstruktoren wie
s/1 und z/0 zu erhaltenden Datenstrukturen, wurden auch Listen mit
Syntax wie [1,2,3,4,5] und [duisburg,X,essen] zuvor bereits
kurz erwähnt.

Zur Arbeit mit Listen hält Prolog diverse Prädikate bereit, zum Beispiel:

member/2, um auszudrücken, dass ein Element in einer Liste
vorkommt

append/3, um auszudrücken, dass eine Liste die
Aneinanderhängung zweier bestimmter Listen ist

length/2, um auszudrücken, welche Länge eine Liste hat
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Vordefinierte Prädikate auf Listen

Interessant dabei ist, dass (ganz im Sinne „unseres“ add/3-Prädikates)
diverse Aufrufmodi der Listenprädikate funktionieren. Zum Beisiel:

?− member ( 3 , [ 1 , 2 , 3 , 4 , 5 ] ) .
true .

?− member (X , [ 1 , 2 , 3 ] ) .
X = 1 ;
X = 2 ;
X = 3.

?− member ( 3 , [X ,Y, Z ] ) .
X = 3 ;
Y = 3 ;
Z = 3.
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Vordefinierte Prädikate auf Listen

Auch für die anderen Listenprädikate, zum Beispiel:

?− append ( [ 1 , 2 , 3 ] , [ 4 , 5 ] , L ) .
L = [ 1 , 2 , 3 , 4 , 5 ] .

?− append (X,Y , [ a , b ] ) .
X = [ ] , Y = [ a , b ] ;
X = [ a ] , Y = [ b ] ;
X = [ a , b ] , Y = [ ] .

?− append (X,X , [ a , b ] ) .
f a l s e .

?− append (X,X , [ a ,Y ] ) .
X = [ a ] , Y = a .
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Vordefinierte Prädikate auf Listen

Oder:

?− length ( [ a , b , c ] ,N ) .
N = 3.

?− length ( L , 3 ) .
L = [ _1570 , _1576 , _1582 ] .

?− length ( L , 3 ) , append (X,X, L ) .
f a l s e .

?− length ( L , 4 ) , append (X,X, L ) .
L = [ _1610 , _1616 , _1610 , _1616 ] , X = [ _1610 , _1616 ] .

?− length ( L , 2 ) , member ( a , L ) ,member ( b , L ) ,member ( c , L ) .
f a l s e .
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Definition von Prädikaten auf Listen

Definiert werden Prädikate auf Listen typischerweise durch Verwendung
bereits vorhandener:

i n s e r t (X, L ,R) :− append (U,V, L ) , append (U , [ X ] ,Y) ,
append (Y,V,R ) .

und/oder Rekursion:

permutat ion ( [ ] , [ ] ) .
permutat ion ( L ,P) :− append ( [ X ] ,Y, L ) , permutat ion (Y, Z ) ,

i n s e r t (X, Z ,P ) .

Mit obigen Definitionen, zum Beispiel:

?− permutat ion ( [ 1 , 2 , 3 ] , L )
L = [ 1 , 2 , 3 ] ;
L = [ 2 , 1 , 3 ] ;
. . .
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Generate and Test – Was und Wie

Angenommen, wir möchten Listen sortieren können, also zum Beispiel
Anfragen wie

?− sor t ingTo ( [ 4 , 2 , 6 , 9 , 1 ] ,R ) .

stellen können, und darauf als Antwort

R = [ 1 , 2 , 4 , 6 , 9 ] .

erhalten.

Also was wollen wir genau?
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Generate and Test – Was und Wie

Die gewünschte Eigenschaft der Ergebnisliste können wir relativ leicht als
Prolog-Prädikat ausdrücken:

i sSor ted ( [ ] ) .
i sSor ted ( [ _ ] ) .
i sSor ted ( Xs ) :− append ( [ X,Y ] , Ys , Xs ) , X =< Y,

append ( [ Y ] , Ys , Zs ) , i sSor ted ( Zs ) .

Dann gilt zum Beispiel:

?− i sSor ted ( [ 4 , 2 , 6 , 9 , 1 ] ) .
f a l s e .
?− i sSor ted ( [ 1 , 2 , 4 , 6 , 9 ] ) .
true .

Und wie können wir eine solche passende Liste erhalten bzw. herstellen?
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Generate and Test – Was und Wie

Nun, eine recht naive, aber funktionierende Lösung wäre:

sor t ingTo ( Xs , Ys ) :− permutat ion ( Xs , Ys ) , i sSor ted ( Ys ) .

Dann in der Tat:

?− sor t ingTo ( [ 4 , 2 , 6 , 9 , 1 ] ,R ) .
R = [ 1 , 2 , 4 , 6 , 9 ] .

Prinzip hier:

Um eine Regel auf Eingaben zu formulieren, die genau dann true liefert,
wenn eine gültige Lösung des Problems vorliegt, Zerlegung in zwei Teile:

Generate-Teil definiert einen Suchraum.

Test-Teil definiert die Bedingung, die erfüllt sein muss.
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Generate and Test – Weitere Beispiele

Aufgabe: Ermittle alle Möglichkeiten, bei dreimaligem Würfeln insgesamt
15 Punkte zu erzielen.

Lösung:

?− W = [1 ,2 ,3 ,4 ,5 ,6 ] , member (A,W) , member (B,W) ,
member (C,W) , A + B + C =:= 15.
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Generate and Test – Weitere Beispiele

Aufgabe: Ermittle alle Möglichkeiten, bei dreimaligem Würfeln mit
verschiedenen Augenzahlen insgesamt 15 Punkte zu er-
zielen.

Lösung:

?− W = [1 ,2 ,3 ,4 ,5 ,6 ] , member (A,W) , member (B,W) ,
member (C,W) , A \= B, A \= C, B \= C,
A + B + C =:= 15.

oder:

?− permutat ion ( [ 1 , 2 , 3 , 4 , 5 , 6 ] , [A ,B,C, _ , _ , _ ] ) ,
A + B + C =:= 15.
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Generate and Test – Weitere Beispiele

Aufgabe: Ermittle alle Möglichkeiten, bei dreimaligem Würfeln mit ver-
schiedenen Augenzahlen in aufsteigender Reihenfolge insge-
samt 15 Punkte zu erzielen.

Lösung:

?− permutat ion ( [ 1 , 2 , 3 , 4 , 5 , 6 ] , [A ,B,C, _ , _ , _ ] ) ,
i sSor ted ( [ A,B,C] ) , A + B + C =:= 15.

Generate-and-Test ist sinnvoll einzusetzen bei nicht-trivialen
kombinatorischen Problemen, wenn

die Menge der potentiellen Lösungen endlich oder besser sogar
recht klein ist, oder

man keine Vorstellung darüber hat, wie systematisch schneller eine
Lösung gefunden werden könnte.

Logik Logikprogrammierung – Generate and Test

Beispiel: Krypto-Arithmetik

ABB – CD = EED

– –

FD + EF =

*

CE

=

EGD

=

FH

=

?*

=

=

Jeder Buchstabe entspreche einer anderen Ziffer.

Wie lautet eine gültige Belegung?
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Beispiel: Krypto-Arithmetik

solve (A,B,C,D,E, F ,G,H) :− generate (A, B,C,D,E, F ,G,H) ,
t e s t (A,B,C,D, E, F ,G,H) .

generate (A,B,C,D, E, F ,G,H) :−
permutat ion ( [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ] ,

[ A ,B,C,D,E, F ,G,H, _ , _ ] ) .

t e s t (A, B,C,D,E, F ,G,H) :− ???

Zum Beispiel die erste Zeile entspricht:

(A * 100 + B * 10 + B) − (C * 10 + D)
=:= E * 100 + E * 10 + D

Und die erste Spalte:

(A * 100 + B * 10 + B) − (F * 10 + D)
=:= E * 100 + G * 10 + D
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Beispiel: Krypto-Arithmetik

Zweite Zeile und zweite Spalte:

(F * 10 + D) + (E * 10 + F) =:= C * 10 + E,
(C * 10 + D) − (E * 10 + F) =:= F * 10 + H

Schließlich noch die Bedingung, dass gleiches Ergebnis in letzter Zeile
und letzter Spalte:

(E * 100 + E * 10 + D) * (C * 10 + E)
=:= (E * 100 + G * 10 + D) * (F * 10 + H)
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Beispiel: Krypto-Arithmetik

Insgesamt für den Test-Teil:

t e s t (A,B,C,D,E, F ,G,H) :−
(A * 100 + B * 10 + B) − (C * 10 + D)

=:= E * 100 + E * 10 + D,
(A * 100 + B * 10 + B) − (F * 10 + D)

=:= E * 100 + G * 10 + D,
(F * 10 + D) + (E * 10 + F) =:= C * 10 + E,
(C * 10 + D) − (E * 10 + F) =:= F * 10 + H,
(E * 100 + E * 10 + D) * (C * 10 + E)

=:= (E * 100 + G * 10 + D) * (F * 10 + H) .

Als eindeutige erfüllende Belegung findet Prolog mit der Anfrage

?− solve (A, B,C,D,E, F ,G,H) .

dies: A = 2, B = 0, C = 8, D = 5, E = 1, F = 6, G = 3, H = 9.
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Beispiel: Krypto-Arithmetik

200 – 85 = 115

– –

65 + 16 =

*

81

=

135

=

69

=

9315*

=

=
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Beispiel: Einstein’s Riddle

Zur Erinnerung:
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Beispiel: Einstein’s Riddle

Versuchen wir, das Rätsel per Generate-and-Test zu lösen.

Für den Generate-Teil wäre zunächst einfach denkbar:

Houses = [ _ , _ , _ , _ , _ ]

Oder auch bereits:

Houses = [ [ _ , _ , _ , _ , _ ]
, [ _ , _ , _ , _ , _ ]
, [ _ , _ , _ , _ , _ ]
, [ _ , _ , _ , _ , _ ]
, [ _ , _ , _ , _ , _ ] ]
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Beispiel: Einstein’s Riddle

Für den Test-Teil nehmen wir uns die einzelnen Hinweise vor.

Zum Beispiel:

1. The Englishman lives in the red house.

Unter der Festlegung, dass wir die einzelnen Attribute jeweils in der
Reihenfolge „color“, „nationality“, „drink“, „pet“, „smoke“ angeben werden,
können wir diesen ersten Hinweis wie folgt ausdrücken:

member ( [ red , englishman , _ , _ , _ ] , Houses )

Analog:

2. The Spaniard owns the dog.

wird zu:

member ( [ _ , spaniard , _ , dog , _ ] , Houses )
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Beispiel: Einstein’s Riddle

Die nächsten beiden Hinweise:

3. Coffee is drunk in the green house.

4. The Ukrainian drinks tea.

werden auch analog behandelt:

member ( [ green , _ , cof fee , _ , _ ] , Houses )

bzw.:

member ( [ _ , uk ra in ian , tea , _ , _ ] , Houses )
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Beispiel: Einstein’s Riddle

Dann wird es wieder etwas interessanter:

5. The green house is immediately to the right of the ivory house.

Das könnten wir so ausdrücken:

r i g h t O f ( [ green , _ , _ , _ , _ ] ,
[ i vo ry , _ , _ , _ , _ ] ,
Houses )

wenn wir ein solches Prädikat hätten.

Definieren wir es uns doch einfach:

r i g h t O f (R, L , L i s t ) :− append ( Pre f i x , _ , L i s t ) ,
append ( _ , [ L ,R] , P r e f i x ) .
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Beispiel: Einstein’s Riddle

Nun kommen nochmal zwei sehr einfach umzusetzende Hinweise:

6. The Winston smoker owns snails.

7. Kools are smoked in the yellow house.

Dann wieder spannender:

8. Milk is drunk in the middle house.

9. The Norwegian lives in the leftmost house.

Diese beiden können wir umsetzen, indem wir

Houses = . . .

verfeinern zu:

Houses = [ [ _ , norwegian , _ , _ , _ ] , _
, [ _ , _ , mi lk , _ , _ ] , _ , _ ]
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Beispiel: Einstein’s Riddle

Für den nächsten Hinweis:

10. The man who smokes Chesterfield lives in the house next to the man
with the fox.

brauchen wir nochmal ein Hilfsprädikat:

nextTo ( [ _ , _ , _ , _ , c h e s t e r f i e l d ] ,
[ _ , _ , _ , fox , _ ] ,
Houses )

welches wir wie folgt definieren können:

nextTo (X, Y, L i s t ) :− r i g h t O f (X, Y, L i s t ) .
nextTo (X,Y, L i s t ) :− r i g h t O f (Y, X, L i s t ) .
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Beispiel: Einstein’s Riddle

Die restlichen Hinweise:

11. Kools are smoked in the house next to the house where the horse is
kept.

12. The Lucky Strike smoker drinks orange juice.

13. The Japanese smokes Parliaments.

14. The Norwegian lives next to the blue house.

lassen sich dann alle analog zu schon vertrauten umsetzen.

Es bleibt noch, letztlich den Zebra-Besitzer und den Wasser-Trinker zu
bestimmen.

Dazu können Variablen und weitere member-Aufrufe verwendet werden.
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Beispiel: Einstein’s Riddle – Gesamtlösung
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