
Programming Paradigms – Haskell part

Summer Term 2025

2

The diversity of programming languages

Some relevant distinctions:
• syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)
• verbosity vs. succinctness (e.g., COBOL vs. Haskell)
• compiled vs. interpreted (e.g., C vs. Perl)
• domain-specific vs. general purpose (e.g., SQL vs. Java)
• sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
• typed vs. untyped (e.g., Haskell vs. Prolog)
• dynamic vs. static (e.g., Ruby vs. ML)
• declarative vs. imperative (e.g., Prolog vs. C)
• object-oriented vs. ???
• …

11.06.2025fmidue.github.io/ProPa-Slides

3

A rough plan of the course

• We will focus on two paradigms: functional and logic
programming.

• For each, we pick at least one specific language:
Haskell (and Elm), Prolog.

• We consider actual programming concepts, and also
some aspects related to semantics (evaluation).

• With Haskell, we explore typing concepts like
inference, genericity, polymorphism.

• We (can) discuss and compare concepts like variables
and bindings, expressions vs. commands, control and
abstraction features, etc., in different languages.

11.06.2025fmidue.github.io/ProPa-Slides

4

On comments about past exercises

“There were too many exercises. It took me about two
days to get a working solution for only one exercise. I
should note that I would have been able to solve the tasks
for example in Python or Java in about an hour so I think
the problem were not my general! programming skills.”

“Autotool rejects programs that do what they are
supposed to do by the task too often so I have to invest
an additional day to rewrite it.”

“Except for the animation exercises …”

11.06.2025fmidue.github.io/ProPa-Slides

Expressions vs. commands

6

Expression-based programming

• Proposition:
Functional programming is about expressions,
whereas imperative programming is about commands.

• Some kinds of expressions you (probably) know:

𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐

𝒑𝒑 ∧ ¬ 𝒒𝒒 ∨ 𝒓𝒓

SUMIF(A1:A8,"<0")

• Generally: terms in any algebra, built from constants
and functions/operators, possibly containing variables

11.06.2025fmidue.github.io/ProPa-Slides

7

Properties of (pure) expressions

Expressions
• … are compositional, built completely from

subexpressions,
• … often have a meaningful type,
• … have a value, which does not depend on “hidden

influences”, and does not change on re-evaluation or
based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions
are built from subexpressions), but extends to typing and
semantics/evaluation.

11.06.2025fmidue.github.io/ProPa-Slides

8

Properties of (pure) expressions

Example 𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐:

The constants are 𝟏𝟏, 𝟐𝟐, 𝟑𝟑 of type ℤ.

The operators are + ∶ ℤ × ℤ → ℤ, � ∶ ℤ × ℤ → ℤ, ()𝟐𝟐 ∶ ℤ → ℤ.

The value of 𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐 depends only on the value of
𝟐𝟐 and the value of 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐, the latter only depends on
the value of 𝟑𝟑 and the value of (𝒙𝒙 + 𝟏𝟏)𝟐𝟐, …

11.06.2025fmidue.github.io/ProPa-Slides

9

Properties of (pure) expressions

• Thanks to these properties, we can easily use notation
known from mathematics, for example reformulating
“𝟐𝟐 + 𝟑𝟑 � (𝒙𝒙 + 𝟏𝟏)𝟐𝟐” as follows:
“𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚𝟐𝟐 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

• Also, we can apply simplifications, for example
replacing exponentiation by multiplication:
“𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚 � 𝒚𝒚 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

• And while this example was about arithmetic
expressions, the concepts apply much more generally.

• But only if we have pure expressions!

11.06.2025fmidue.github.io/ProPa-Slides

10

The situation in imperative programming languages

• So what is different in imperative programming?
• Don’t we also have expressions there?

For example in:
b = 100000;
if (z > 0) {
z = 100 + z;
j = 0;
while (b < 200000) {
b = b * z / 100;
j = j + 1; }

} else j = -1;

• Yes, there are expressions, but they are not the dominating
syntactical construct. Commands are!

11.06.2025fmidue.github.io/ProPa-Slides

11

The situation in imperative programming languages

• Why is this difference relevant? What properties do commands, as
opposed to expressions, not have?

• Well, for example, they are not even syntactically compositional:
Not every well-formed smaller part of a command is itself a
command.

while (b < 200000) {
b = b * z / 100;
j = j + 1;

}

• Instead, expressions occur, also keywords, …
• Moreover, commands do not always have a meaningful type.
• Or even just a value. (Try giving a value for the above block.)

11.06.2025fmidue.github.io/ProPa-Slides

12

The situation in imperative programming languages

• As a consequence, we cannot name arbitrary well-formed smaller
parts (as opposed to what we saw for expressions and their
subexpressions).

• For example, we cannot simply write:
body = {
b = b * z / 100;
j = j + 1;

}
while (b < 200000) body;

• Even workarounds involving “functions”/procedures/methods are
not as flexible and useful as the kind of mathematical notation for
expressions: “𝟐𝟐 + 𝟑𝟑 � 𝒚𝒚𝟐𝟐 where 𝒚𝒚 = 𝒙𝒙 + 𝟏𝟏”.

11.06.2025fmidue.github.io/ProPa-Slides

13

The situation in imperative programming languages

• Okay, so what about the sublanguage of expressions in an
imperative language? Can they, at least, be treated as we saw
before?

• Not in general! For example, we saw that mathematically we
should be able to rewrite something like “𝒆𝒆𝒆𝒆𝒆𝒆𝟏𝟏 + 𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 � (𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑)𝟐𝟐” as
any of:

𝒆𝒆𝒆𝒆𝒆𝒆𝟏𝟏 + 𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 � 𝒗𝒗𝒗𝒗𝒗𝒗𝟐𝟐 where 𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑
𝒆𝒆𝒆𝒆𝒆𝒆𝟏𝟏 + 𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 � 𝒗𝒗𝒗𝒗𝒗𝒗 � 𝒗𝒗𝒗𝒗𝒗𝒗 where 𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑
𝒆𝒆𝒆𝒆𝒆𝒆𝟏𝟏 + 𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 � 𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑 � 𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑

• But code snippets like “result = exp1 + exp2 * (exp3)^2;”
do not always take well to being replaced by:

var = exp3; result = exp1 + exp2 * var^2;

• … or by code snippets corresponding to the other expression
alternatives above.

11.06.2025fmidue.github.io/ProPa-Slides

14

The situation in imperative programming languages

• Indeed, consider these four code snippets:
result = exp1 + exp2 * (exp3)^2;
var = exp3; result = exp1 + exp2 * var^2;
var = exp3; result = exp1 + exp2 * var * var;
result = exp1 + exp2 * exp3 * exp3;

• And imagine instantiations with exp3 being the “expression” i++
or some invocation f() for a procedure/method f.

• The problem is that expressions in an imperative language are
typically not pure expressions. Instead, they have side-effects!

• (For same reason, re-evaluation of an expression can change the
value. And order of evaluating subexpressions becomes relevant.)

11.06.2025fmidue.github.io/ProPa-Slides

15

So what?

• So, how “bad” is all that?
• Do these artificial examples “prove” anything?

• Well, I haven’t (yet?) really argued that the pure
expression-based style is better in some sense.

• But what should have become clear is that it is
different!

11.06.2025fmidue.github.io/ProPa-Slides

A look at FP with CodeWorld

17

Describing a picture via an expression

A rather simple example:
main :: IO ()

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture

triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective …

11.06.2025fmidue.github.io/ProPa-Slides

18

Brief recap from last week

• Expressions: syntactic structures one could imagine
after the “=” in an assignment “var = …” in C or Java.

• Values: results of evaluating expressions, obtained by
combining values of subexpressions.

• Commands: syntactic structures that are characterized
not so much by what (if anything at all) they evaluate
to, but rather by what effect they have (change of
storage cells, looping, etc.).

• In a pure setting without commands, any two
expressions that have the same value can be replaced
for each other, without changing the behaviour of the
program.

11.06.2025fmidue.github.io/ProPa-Slides

19

Describing a picture via an expression

Observations:
• Compositionality on level of syntax, types, and values.
• Pictures are expressions/values here, can be named etc.
• Functions/operators used:

circle : ℝ → Picture
polygon : [ℝ × ℝ] → Picture
colored : Color × Picture → Picture
translated : ℝ × ℝ × Picture → Picture
& : Picture × Picture → Picture

• Properties like: translated a b (colored c d)
≡ colored c (translated a b d)

11.06.2025fmidue.github.io/ProPa-Slides

20

Describing an animation via a function

A slight variation of example from last week:
main :: IO ()

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

• Dependence on time expressed via parameter t.

• That parameter is never set by us ourselves for the animation.
• No for-loop or other explicit control.
• Instead, the animationOf construct takes care “somehow”

(this involves evaluating scene for different t).

11.06.2025fmidue.github.io/ProPa-Slides

21

Another example

• Mathematically describing dynamic behaviour as a function of
time should not be much of a surprise.

• A well-known physics example:
𝒙𝒙 𝒕𝒕 = 𝒗𝒗𝟎𝟎𝟎𝟎 � 𝒕𝒕
𝒚𝒚 𝒕𝒕 = 𝒗𝒗𝟎𝟎𝟎𝟎 � 𝒕𝒕 −

𝒈𝒈
𝟐𝟐
� 𝒕𝒕𝟐𝟐

• As a program:
scene :: Double -> Picture
scene t = cliff & translated x y (circle 0.1)
where x = 3 * t

y = 6 * t - 9.81 / 2 * t^2
cliff = polyline [(-5,0),(0,0),(0,-2)]

11.06.2025fmidue.github.io/ProPa-Slides

Rich expressions

23

A desire for additional expressivity

• In the CodeWorld examples today, we have already
expressed continuous distribution, throughout time,
via functions.

• What if we also, or alternatively, want a discrete
distribution, “throughout space”?

• So, instead of one triangle moving in time, we want
several static triangles at different places.

• But we do not really want to replicate these “by hand”.
• Maybe now is the time for a for-loop?
• No, we don’t have that.
• But what do we have instead?

11.06.2025fmidue.github.io/ProPa-Slides

24

One kind of richer expressions: list comprehensions

Using a list comprehension:
main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• With pictures :: [Picture] -> Picture.
• And a list comprehension [scene d | d <- [0..5]].
• This is not exactly like a for-loop, for several reasons.

• Instead, it is like a mathematical set comprehension 𝟐𝟐 � 𝒏𝒏 𝒏𝒏 ∈ ℕ .

11.06.2025fmidue.github.io/ProPa-Slides

25

More mundane examples of list comprehensions

> [1,3..10]

[1,3,5,7,9]

> [x^2 | x <- [1..10], even x]

[4,16,36,64,100]

> [y | x <- [1..10], let y = x^2, mod y 4 == 0]

[4,16,36,64,100]

> [x * y | x <- [1,2,3], y <- [1,2,3]]

[1,2,3,2,4,6,3,6,9]

11.06.2025fmidue.github.io/ProPa-Slides

26

More mundane examples of list comprehensions

> [(x,y) | x <- [1,2,3], y <- [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [(x,y) | y <- [4,5], x <- [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

> [(x,y) | x <- [1,2,3], y <- [1..x]]

[(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

> [x ++ y | (x,y) <- [("a","b"),("c","d")]]

["ab","cd"]

11.06.2025fmidue.github.io/ProPa-Slides

27

So where are we, expressivity-wise?

Some takeaways from examples we have seen:
• Non-constant behaviour expressed as functions, in the

mathematical sense. 𝒇𝒇 𝒙𝒙 = ⋯
• Such a description defines the behaviour “as a whole”, not

in a “piecemeal” fashion.
• For example, there is no “first run this piece of animation,

then that piece, and then something else”.
• Actually, there is not even a concept of “this piece of

animation stops at some point”.
Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential
commands, with imperative keywords or semicolons etc.
List comprehensions are also not the answer, because they do
not define functions, just (list) values. Instead, …

11.06.2025fmidue.github.io/ProPa-Slides

28

Case distinctions

• Switching by conditional expressions:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• This is very much in line with case distinctions in
mathematical functions:

𝒇𝒇 𝒙𝒙 = �−𝒙𝒙, 𝒊𝒊𝒊𝒊 𝒙𝒙 < 𝟎𝟎
𝒙𝒙, 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

11.06.2025fmidue.github.io/ProPa-Slides

29

Comparison to the situation in imperative setting

• In C/Java we have two forms of if on commands:

if (...) { ... }
if (...) { ... } else { ... }

• In an expression language, the form without else does not make
sense, so in Haskell we always have:

if ... then ... else ...

• This corresponds to C/Java’s conditional operator:

... ? ... : ...

11.06.2025fmidue.github.io/ProPa-Slides

30

Some usage hints on case distinctions in Haskell

• Pragmatically, an if-then-else expression “without an else”
would be realized by having some “neutral value” in the else-
branch. Remember:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• Similarly, in a list context: if condition then list else []

• Also, do not hesitate to use if-then-else as subexpressions
freely:

f x y (if exp1 then exp2 else exp3)
≡ if exp1 then f x y exp2 else f x y exp3

11.06.2025fmidue.github.io/ProPa-Slides

Some remarks on syntax and types

32

“Oddities” of syntax at the type level

Instead of:
circle : ℝ → Picture
polygon : [ℝ × ℝ] → Picture
colored : Color × Picture → Picture
translated : ℝ × ℝ × Picture → Picture
& : Picture × Picture → Picture

type signatures actually look like this:
circle :: Double -> Picture
polygon :: [(Double, Double)] -> Picture
colored :: Color -> Picture -> Picture
translated :: Double -> Double -> Picture -> Picture
(&) :: Picture -> Picture -> Picture

11.06.2025fmidue.github.io/ProPa-Slides

33

“Oddities” of syntax at the expression/function level

• Instead of f(x) and g(x,y,z), we write f x and g x y z.

• As an example for nested function application, instead of
g(x,f(y),z), we write g x (f y) z.

• The same syntax is used at function definition sites, so something
like

float f(int a, char b)
{ ... }

in C or Java would correspond to

f :: Int -> Char -> Float
f a b = ...

in Haskell.

11.06.2025fmidue.github.io/ProPa-Slides

34

Layout-sensitivity

In Haskell, this:
let y = a * b

f x = (x + y) / y
in f c + f d

is equivalent to:
let { y = a * b; f x = (x + y) / y }
in f c + f d

But these are not accepted:
let y = a * b let y = a * b

f x = (x + y) / y f x = (x + y) / y
in f c + f d in f c + f d

11.06.2025fmidue.github.io/ProPa-Slides

35

Other syntax remarks

• Haskell beginners tend to use unnecessarily many
brackets. For example, no need to write f (g (x)) or
(f x) + (g y), since f (g x) and f x + g y
suffice.

• Further brackets can sometimes be saved by using the
$ operator, for example writing f $ g x $ h y instead
of f (g x (h y)). I don’t like it in beginners’ code.

• We let Autotool give warnings about redundant
brackets, as well as about overuse of $.
Sometimes we enforce adherence to those warnings.

11.06.2025fmidue.github.io/ProPa-Slides

36

A specific observation based on exercise submissions

If you have repeated occurrences of a common subexpression,
share them! For example, instead of something like this:

scene t =
if 8 * sin t > 0
then translated (8 * cos t) (8 * sin t) ...
else ...

rather write this:

scene t =
let x = 8 * cos t

y = 8 * sin t
in if y > 0 then translated x y ... else ...

11.06.2025fmidue.github.io/ProPa-Slides

37

Specifics about number types

• Haskell has various number types: Int, Integer,
Float, Double, Rational, …

• Number literals can have a different concrete type
depending on context, e.g., 3 :: Int, 3 :: Float,
3.5 :: Float, 3.5 :: Double

• For general expressions there are overloaded
conversion functions, for example fromIntegral with,
among others, any of the types Int -> Integer,
Integer -> Int, Int -> Rational, …, and
truncate, round, ceiling, floor, each with any of
the types Float -> Int, Double -> Integer, …

11.06.2025fmidue.github.io/ProPa-Slides

38

… and arithmetic operators

• Operators are also overloaded, and often no
conversion is necessary, for example in 3 + 4.5 or
also in:

f x = 2 * x + 3.5
g y = f 4 / y

• In other cases, conversion is necessary, for example in
this:

f :: Int -> Float
f x = 2 * fromIntegral x + 3.5

or:
f x = 2 * x + 3.5
g y = f (fromIntegral (length "abcd")) / y

11.06.2025fmidue.github.io/ProPa-Slides

39

… and arithmetic operators

• Some operators are available only at certain types, e.g.,
no division symbol “/” on integer types.

• Instead, the function div :: Int -> Int -> Int
(also on Integer).

• Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 `div` 3 instead
of div 17 3.

• Useful mathematical constants and functions exist,
e.g., pi, sin, sqrt, min, max, …

11.06.2025fmidue.github.io/ProPa-Slides

40

Some observations based on past years’ exercises

• In case of doubt concerning number conversions, it
usually does not hurt to add some fromIntegral-
calls, which in the worst case will be no-ops (since,
among others, fromIntegral :: Int -> Int).

• It is always a good idea to write down type signatures
for (at least) top-level functions. Among other benefits,
it saves you from having to deal with (errors involving)
types like:

fun :: (Floating a, Ord a) => a -> a

11.06.2025fmidue.github.io/ProPa-Slides

41

Types beside number types

Other pre-existing types:
• Type Bool, with values True and False and operators
&&, ||, and not.

• Type Char, with values 'a', 'b', …, '\n' etc., and
functions succ, pred, as well as comparison operators.

• List types: [Int], [Bool], [[Int]], …, with various
pre-defined functions and operators.

• Character sequences: type String = [Char], with
special notation "abc" instead of ['a','b','c'].

• Tuple types: (Int,Int), (Int,String,Bool),
((Int,Int),Bool,[Int]), also [(Bool,Int)] etc.

11.06.2025fmidue.github.io/ProPa-Slides

Programming by case distinction
(more ways of doing it)

43

Expressing conditional behaviour

Remember:

• Switching by conditional expressions:

scene :: Double -> Picture
scene t = if t < 3

then translated t t (circle 1)
else blank

• This is very much in line with case distinctions in
mathematical functions:

𝒇𝒇 𝒙𝒙 = �−𝒙𝒙, 𝒊𝒊𝒊𝒊 𝒙𝒙 < 𝟎𝟎
𝒙𝒙, 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

11.06.2025fmidue.github.io/ProPa-Slides

44

Expressing conditional behaviour

• Likely not yet seen, function definition using guards:

scene t
| t <= pi = ...
| pi < t && t <= 2 * pi = ...
| 2 * pi < t = ...

• This is again similar to mathematical notation:

𝒇𝒇 𝒙𝒙 = �
𝟎𝟎, 𝒊𝒊𝒊𝒊 𝒙𝒙 ≤ 𝟎𝟎
𝒙𝒙, 𝒊𝒊𝒊𝒊 𝟎𝟎 < 𝒙𝒙 ≤ 𝟏𝟏
𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒙𝒙 > 𝟏𝟏

11.06.2025fmidue.github.io/ProPa-Slides

45

Function definition using guards

• Let us discuss some details based on this example:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n > 0 = n * factorial (n - 1)

• First of all, what about the order of clauses?
• Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer
factorial n

| n > 0 = n * factorial (n - 1)
| n == 0 = 1

11.06.2025fmidue.github.io/ProPa-Slides

46

Function definition using guards

• What if the guard conditions overlap?
• Then this is okay:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

but this is problematic:

factorial :: Integer -> Integer
factorial n

| n >= 0 = n * factorial (n - 1)
| n == 0 = 1

• Always the first matching clause is used!

11.06.2025fmidue.github.io/ProPa-Slides

47

Function definition using guards

• Even with the “correct” order:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| n >= 0 = n * factorial (n - 1)

we can have problems with some inputs.

• If no clause matches, we get a runtime error!

11.06.2025fmidue.github.io/ProPa-Slides

48

Function definition using guards

• In fact, if called with appropriate settings, the compiler
warns us of a potential runtime error ahead of time.

• We can avoid both the warning and the actual non-
exhaustiveness error at runtime by having a “catch-all”
clause:

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| otherwise = n * factorial (n - 1)

11.06.2025fmidue.github.io/ProPa-Slides

49

Function definition using guards

• In this specific case, negative inputs would still be a
problem.

• Which we could remedy as follows:

factorial :: Integer -> Integer
factorial n

| n <= 0 = 1
| otherwise = n * factorial (n - 1)

• Some lessons: order matters (and can be exploited),
exhaustiveness matters. Also, some further aspects…

11.06.2025fmidue.github.io/ProPa-Slides

50

Function definition using guards

• The compiler’s checks ahead of time are nice, but
necessarily not perfect.

• For example, it cannot in general detect infinite recursion
ahead of time. (The Halting Problem!)

• Even the “simpler” static exhaustiveness checks are not as
powerful as one might sometimes hope.

• For example, one might hope that something like this:

f x y
| x == y = ...
| x /= y = ...

is statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.

11.06.2025fmidue.github.io/ProPa-Slides

51

Function definition using guards

• Also, the more desirable “fix” to the issue of possible
negative inputs for

factorial :: Integer -> Integer
factorial n

| n == 0 = 1
| otherwise = n * factorial (n - 1)

(instead of switching to n <= 0 in the first clause)
would be to statically prevent negative inputs from
occurring at all, via the type system.

• But that is a topic for another lecture.

11.06.2025fmidue.github.io/ProPa-Slides

52

Function definition using guards

• For now, let us apply our insights to this situation
considered earlier:

scene t
| t <= pi = ...
| pi < t && t <= 2 * pi = ...
| 2 * pi < t = ...

• Here is how this should probably look instead:

scene t
| t <= pi = ...
| t <= 2 * pi = ...
| otherwise = ...

11.06.2025fmidue.github.io/ProPa-Slides

53

Function definition using guards

Some further syntactic variations:

factorial :: Integer -> Integer
factorial n | n == 0 = 1
factorial n | otherwise = n * factorial (n - 1)

factorial :: Integer -> Integer
factorial n | n == 0 = 1
factorial n = n * factorial (n - 1)

factorial :: Integer -> Integer
factorial 0 = 1
factorial n = n * factorial (n - 1)

11.06.2025fmidue.github.io/ProPa-Slides

54

Function definition using guards

Another example:

ackermann :: Integer -> Integer -> Integer
ackermann 0 n | n >= 0 = n + 1
ackermann m 0 | m > 0 = ackermann (m - 1) 1
ackermann m n | m > 0 && n > 0
= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness
warnings.

11.06.2025fmidue.github.io/ProPa-Slides

55

Function definitions generally

General rules for function definitions:

• One or more equations, with or without guards.

• One or more arguments; so far, only variable names
(can be anonymous) or constants.

• Uniqueness of variable names within one equation.

• Never expressions, in argument position at definition
sites, that would require computation or “solving”.

11.06.2025fmidue.github.io/ProPa-Slides

56

Function definitions generally

A few more examples:

not :: Bool -> Bool
not True = False
not _ = True

(&&) :: Bool -> Bool -> Bool
True && True = True
_ && _ = False

(&&) :: Bool -> Bool -> Bool
b && True = b
_ && _ = False

11.06.2025fmidue.github.io/ProPa-Slides

Specific observations from exercises

58

Some observations based on exercise submissions

Almost every time one sees a use of access-by-index in
Haskell code, it was not the best choice of expression.

A typical case is if something corresponding to this:
whatever [computeFrom argument

| argument <- list]

was instead written like this:
whatever [computeFrom (list !! index)

| index <- [0..(length list - 1)]]

11.06.2025fmidue.github.io/ProPa-Slides

Generally working with lists

60

A few words about lists up front

• We will consider a lot of examples in the lecture and
exercises that deal with lists.

• But that is mostly for didactical reasons. In the “real
world”, there are often more appropriate data
structures (and we will eventually see how to define
them ourselves).

• In part due to historical precedent (Lisp), Haskell has a
very rich library of list processing functions.

• It also has specific syntactical support for lists (e.g.,
list comprehensions).

• As already mentioned, Haskell lists are homogeneous.

11.06.2025fmidue.github.io/ProPa-Slides

61

Examples of existing (first-order) functions on lists

take 3 [1..10] == [1,2,3]

drop 3 [1..10] == [4,5,6,7,8,9,10]

null [] == True

null "abcde" == False

length "abcde" == 5

head "abcde" == 'a'

last "abcde" == 'e'

tail "abcde" == "bcde"

init "abcde" == "abcd"

splitAt 3 "abcde" == ("abc","de")

"abcde" !! 3 == 'd'

reverse "abcde" == "edcba"

"abc" ++ "def" == "abcdef"

zip "abc" "def" == [('a','d'),('b','e'),('c','f')]

concat [[1,2],[],[3]] == [1,2,3]

11.06.2025fmidue.github.io/ProPa-Slides

62

Different ways of working with lists

We now have certain choices, such as whether to work
with recursion or by just combining existing functions
(and possibly list comprehensions).
For example:
isPalindrome :: String -> Bool
isPalindrome s | length s < 2 = True
isPalindrome s = head s == last s &&

isPalindrome (init (tail s))

vs.:
isPalindrome :: String -> Bool
isPalindrome s = reverse s == s

11.06.2025fmidue.github.io/ProPa-Slides

63

Infinite lists

• In Haskell there are even expressions and values for
infinite lists, for example:

[1,3..] ≡ [1,3,5,7,9,...]

[n^2 | n <- [1..]] ≡ [1,4,9,16,...]

• And while we of course cannot print complete such
lists, we can still work normally with them, as long as
the ultimate output is finite:

take 3 [n^2 | n <- [1..]] == [1,4,9]

zip [0..] "ab" == [(0,'a'),(1,'b')]

11.06.2025fmidue.github.io/ProPa-Slides

64

Infinite lists

But there is no mathematical magic at work, so for
example this:

[m | m <- [n^2 | n <- [1..]], m < 100]

will “hang” after producing a finite prefix.

Why is that, actually?

Discussion: involves referential transparency!

11.06.2025fmidue.github.io/ProPa-Slides

65

An interesting function on finite lists

Essentially Quicksort:

sort :: [Integer] -> [Integer]
sort [] = []
sort list =
let
pivot = head list
smaller = [x | x <- tail list, x < pivot]
greater = [x | x <- tail list, x >= pivot]

in sort smaller ++ [pivot] ++ sort greater

11.06.2025fmidue.github.io/ProPa-Slides

Polymorphic types

67

Polymorphic functions on lists

• Remember that each Haskell list is homogeneous, i.e.,
cannot contain elements of different types.

"abc" :: [Char]
[1,2,3] :: [Integer]
['a',2] -- ill-typed

• At the same time, functions and operators on lists can
be used quite flexibly:

reverse "abc" == "cba"
reverse [1,2,3] == [3,2,1]
"abc" ++ "def" == "abcdef"
[1,2] ++ [3,4] == [1,2,3,4]

• We have already depended on this flexibility a lot!

11.06.2025fmidue.github.io/ProPa-Slides

68

Polymorphic functions on lists

• So there should be a way to reconcile the rigidity of
types with flexible use of functions.

• We want to be able to write

"abc" ++ "def" and [1,2] ++ [3,4],

as well as

elem 2 [1,2] and elem 'c' "ab",

but at the same time prevent calls like

"ab" ++ [3,4] and elem 'a' [1,2,3].

11.06.2025fmidue.github.io/ProPa-Slides

69

Polymorphic functions on lists

• So what are the types of functions like those seen?
• We do not have, and clearly do not want, different

functions like reverseChar :: [Char] -> [Char]
and reverseInteger :: [Integer] -> [Integer].

• Instead, we use type variables, as in:

reverse :: [a] -> [a]

• That is not, at all, like being untyped. For example, the
type (++) :: [a] -> [a] -> [a] does not mean
that “anything goes”.
(Still not possible to write this: "ab" ++ [3,4].)

11.06.2025fmidue.github.io/ProPa-Slides

70

Polymorphic functions on lists

• We have already seen a lot of functions that fit this
pattern:

head :: [a] -> a
tail :: [a] -> [a]
last :: [a] -> a
init :: [a] -> [a]
length :: [a] -> Int
null :: [a] -> Bool
concat :: [[a]] -> [a]

• In concrete applications, the type variable gets
instantiated appropriately: head "abc" :: Char.

11.06.2025fmidue.github.io/ProPa-Slides

71

Polymorphic functions on lists

• Of course, a polymorphic function does not need to be
polymorphic in all its arguments.

• For example:

(!!) :: [a] -> Int -> a
take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([a],[a])

• And what about zip?

11.06.2025fmidue.github.io/ProPa-Slides

72

Polymorphic functions on lists

• The function zip also takes homogeneous lists as
arguments.

• But unlike the case of (++), where we want to allow
"ab" ++ "cd" and [1,2] ++ [3,4], but to disallow
"ab" ++ [3,4], for zip we want to allow all of the
following:

zip "ab" "cd"
zip [1,2] [3,4]
zip "ab" [3,4]

• So the type cannot be like that for (++):
[a] -> [a] -> ...

11.06.2025fmidue.github.io/ProPa-Slides

73

Polymorphic functions on lists

• Instead:
zip :: [a] -> [b] -> [(a,b)]

• Different type variables can be, but do not have to be,
instantiated by different types.

• Hence, all of these make sense:
zip "ab" "cd" -- a = Char, b = Char
zip [1,2] [3,4] -- a = Int, b = Int
zip "ab" [3,4] -- a = Char, b = Int

• Whereas a mixed call for (++) does not:
"ab" ++ [3,4] -- a = Char or Int?

11.06.2025fmidue.github.io/ProPa-Slides

74

Polymorphic functions in other languages

• Have you seen something like those types in another
language before?

• Example in Java with Generics:

<T> List<T> reverse(List<T> list)
{ ... }

corresponding to:

reverse :: [a] -> [a]
reverse list = ...

11.06.2025fmidue.github.io/ProPa-Slides

75

Inference of polymorphic types

• One aspect (among several) that distinguishes
polymorphism in Haskell and its FP predecessors from
most of those other languages is type inference.

• We need not declare polymorphism, since the compiler
will always infer the most general type automatically.

• For example, for f (x,y) = x the compiler infers
f :: (a,b) -> a.

• And for g (x,y) = if pi > 3 then x else y,
g :: (a,a) -> a.

11.06.2025fmidue.github.io/ProPa-Slides

76

Consequences of polymorphic types

• Polymorphism has really interesting semantic
consequences.

• For example, it is not hard to convince ourselves that
always:

reverse [f a | a <- list]
≡ [f a | a <- reverse list]

• But what if I told you that this holds, for arbitrary f and
list, not only for reverse, but for any function with
type [a] -> [a], no matter how it is defined?

• Can you give some such functions (and check the
above claim on an intuitive level)?

11.06.2025fmidue.github.io/ProPa-Slides

Higher-order functions

78

Higher-order functions

• So far, we have mainly dealt with first-order functions,
that is, functions that take “normal data” as input
arguments and ultimately return some value.

• But we have also already seen functions to which we
passed other functions as arguments. For example,
quickCheck and animationOf.

• Indeed, let us take a look at the type of the latter:
animationOf :: (Double -> Picture) -> IO ()

• Note: Every function is a (mathematical) value, but not
every value is a function.

11.06.2025fmidue.github.io/ProPa-Slides

79

The types of higher-order functions

• The type

animationOf :: (Double -> Picture) -> IO ()

means something completely different than the type

animationOf :: Double -> Picture -> IO ()

• Indeed, parentheses in such places are very significant.

• Let us discuss this based on a simpler example type.

11.06.2025fmidue.github.io/ProPa-Slides

80

The types of higher-order functions

• What are some functions of the following type?

f :: Int -> Int -> Int

• And what about the following type?

f :: (Int -> Int) -> Int

• What kinds of inputs does either of these take?
• And what can they do with their inputs?

11.06.2025fmidue.github.io/ProPa-Slides

81

Functions to pass to higher-order functions

• Where do we get functions from that we can pass as
arguments to higher-order functions?

• Well, in Haskell functions are almost everywhere, right?
So we should not have any shortage of supply.

• Of course, there are many predefined functions already.
• We could also use functions we have explicitly defined

in our program (such as passing your own scene
function to animationOf).

• Or partial applications of any of those. For example,
(+) :: Int -> Int -> Int, and as a consequence,
(+) 5 :: Int -> Int.

11.06.2025fmidue.github.io/ProPa-Slides

82

Some syntactic specialties

• Indeed, the type Int -> Int -> Int could be read as
Int -> (Int -> Int).

• But those parentheses can be omitted.
• Two viewpoints here: a function that takes two Int

values and returns one Int value, or a function that
takes one Int value and returns a function that takes
one Int value and returns one Int value.

• Both viewpoints are valid! No difference in usage
(thanks to Haskell’s function application syntax).

• Another syntactic specialty: so-called “sections”.
For example, “(+) 5” can be written as “(5 +)”.

11.06.2025fmidue.github.io/ProPa-Slides

83

Lambda-abstractions

• We can also syntactically create new functions “on the
fly”, instead of predefined or own, explicitly defined
and named, functions already in the program.

• Such anonymous functions use the so-called lambda-
abstraction syntax (which we have already seen in the
context of QuickCheck tests): \x -> x + x

• So, some options of functions we could pass to a
function f :: (Int -> Int) -> Int are:
id, succ, (gregorianMonthLength 2019), (* 5),
(\x -> x + x), (\n -> length [1..n])

11.06.2025fmidue.github.io/ProPa-Slides

84

Lambda-abstractions

• The lambda-abstraction syntax also allows us to get a
clearer view on Haskell’s function definition syntax
(and its choice to be different from standard
mathematical function definition syntax).

• Namely, the following four definitions are equivalent
(each of type add :: Int -> Int -> Int):

add x y = x + y
add x = \y -> x + y
add = \x -> \y -> x + y
add = \x y -> x + y

• With standard mathematical notation, add(x,y) = … ,
such variations would not have been so fluent.

11.06.2025fmidue.github.io/ProPa-Slides

85

Usefulness of higher-order functions

• But is any of that really useful to us?
• The examples so far look somewhat esoteric and

artificial, except maybe for the animationOf and
quickCheck “drivers”, which we do not know how to
write ourselves yet though, anyway (due in part to the
involvement of IO).

• Well, there are many immediately useful higher-order
functions on lists as well…

11.06.2025fmidue.github.io/ProPa-Slides

Higher-order functions on lists

87

Higher-order functions on lists

• For example, the function

foldl1 :: (a -> a -> a) -> [a] -> a

puts a (left-associative) function/operator between all
elements of a non-empty list.

• So to compute the sum of such a list:

foldl1 (+) [1,2,3,4]

which will expand to:

1 + 2 + 3 + 4

11.06.2025fmidue.github.io/ProPa-Slides

88

Higher-order functions on lists

• Another useful function:

map :: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

• For example:

map even [1..10]

map (dilated 5) [pic1, pic2, pic3]

11.06.2025fmidue.github.io/ProPa-Slides

89

Higher-order functions on lists

• And another one:

filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain
predicate.

• For example,

filter isPalindrome completeDictionary

filter (> 0.5) bonusPercentageList

11.06.2025fmidue.github.io/ProPa-Slides

90

Relationship to list comprehensions

• While the following are not the actual definitions of map
and filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]
map f list = [f a | a <- list]

filter :: (a -> Bool) -> [a] -> [a]
filter p list = [a | a <- list, p a]

• Conversely, every list comprehension expression, no
matter how complicated with several generators,
guards, etc., can be implemented via map, filter, and
concat.

11.06.2025fmidue.github.io/ProPa-Slides

91

Relationship to list comprehensions

• Is programming with map and filter (and foldl1 and
the like) somehow “better” or “more idiomatic” than
using list comprehensions?

• In a sense, yes, since higher-order functions provide a
further step in the direction of more abstraction.

• For example, if we want to square some numbers from
a given list, subject to the condition that we are
specifically interested in numbers divisible by four, but
still have to work out whether we want to check this
divisibility before or after squaring, then …

11.06.2025fmidue.github.io/ProPa-Slides

92

Relationship to list comprehensions

… with list comprehensions we would consider, and
maybe experiment with,

[x^2 | x <- list, x `mod` 4 == 0]
vs.

[y | x <- list, let y = x^2, y `mod` 4 == 0]

While with map and filter we would simply decide
between

map (^2) . filter (\x -> x `mod` 4 == 0)
and

filter (\x -> x `mod` 4 == 0) . map (^2)

11.06.2025fmidue.github.io/ProPa-Slides

93

Expressing laws

• Also, a law like (mentioned earlier):

reverse [f a | a <- list]
≡ [f a | a <- reverse list]

can nicely be expressed as:

reverse . map f ≡ map f . reverse

• Then we can also ask under which conditions this holds:

filter p . map f ≡ map f . filter q

• Generally, higher-order functions are a boon for “lawful
program construction”.

11.06.2025fmidue.github.io/ProPa-Slides

Algebraic data types

95

Types in Haskell

• We have so far seen various types on which functions
can operate, such as number types (Integer, Float,
…), other base types like Bool and Char, as well as list
and tuple constructions to make compound types,
arbitrarily nested ([…], (…,…)).

• We have also seen that libraries can apparently define
their own, domain specific types, such as Picture.

• To do the same ourselves: algebraic data types.
• These are a more general and more stringent version of

what is usually known as enumeration or union types.
They are also the inspiration for features like Swift’s
(recursive) enum types.

11.06.2025fmidue.github.io/ProPa-Slides

96

Simple enumeration types

• Let us start simple. Assume we want to be able to talk
about days of the week, and compute things like “this
is a workday, yes/no”.

• We could fix some encoding of Monday, Tuesday etc.
as numbers (e.g., Monday = 1, Tuesday = 2, …) and
define functions like:

workday :: Integer -> Bool
workday d = d < 6

• In a sense, we were lucky here that the intended
property corresponds to number ranges 1–5 and 6–7.

11.06.2025fmidue.github.io/ProPa-Slides

97

Simple enumeration types

• So let us try to instead express on which days of the week
an exercise session in the ProPa course was scheduled.

• The answer this time is not a simple arithmetic comparison
like d < 6, but we can for example implement:

exerciseDay :: Integer -> Bool
exerciseDay 3 = False
exerciseDay 6 = False
exerciseDay 7 = False
exerciseDay _ = True

• In either case, what if we call workday or exerciseDay with
an input like 12?

11.06.2025fmidue.github.io/ProPa-Slides

98

Simple enumeration types

• Alternative approach, explicit new values:

data Day
= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

• Now:

exerciseDay :: Day -> Bool
exerciseDay Wednesday = False
exerciseDay Saturday = False
exerciseDay Sunday = False
exerciseDay _ = True

… and it is impossible to pass illegal inputs (like 12th day).
• Terminology: type constructors and data constructors.

11.06.2025fmidue.github.io/ProPa-Slides

99

Simple enumeration types

• In addition to excluding absurd inputs, we get more useful
exhaustiveness (and also redundancy) checking.

• For example, remember the game level example:

level :: (Integer, Integer) -> Integer

aTile :: Integer -> Picture
aTile 1 = block
aTile 2 = water
aTile 3 = pearl
aTile 4 = air
aTile _ = blank

• Imagine that we introduce a new kind of tile, produce its new
“number code” inside the level-function, but forget to also
handle it in the aTile-function. No compiler warning!

11.06.2025fmidue.github.io/ProPa-Slides

100

Simple enumeration types

If we had instead introduced a new type:
data Tile = Blank | Block | Pearl | Water | Air

and used level :: (Integer, Integer) -> Tile

and: aTile :: Tile -> Picture
aTile Blank = blank
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air = air

then adding another value to data Tile could not go
unnoticed in aTile.
The compiler would actually warn us if we forgot to handle the
new value there!

11.06.2025fmidue.github.io/ProPa-Slides

101

General algebraic data types

• Going beyond simple enumeration types, algebraic data
types can encapsulate additional values in the alternatives.

• That is, the data constructors can take arguments.
• For example:

data Date = Day Integer Integer Integer
data Time = Hour Integer
data Connection = Train Date Time Time

| Flight String Date Time Time

• A possible value of type Connection:

Train (Day 20 04 2011) (Hour 11) (Hour 14)

11.06.2025fmidue.github.io/ProPa-Slides

102

General algebraic data types

• Computation on such types is via pattern-matching:

travelTime :: Connection -> Integer

travelTime (Train _ (Hour d) (Hour a))
= a - d + 1

travelTime (Flight _ _ (Hour d) (Hour a))
= a - d + 2

• At the same time, the data constructors are also normal
functions, for example:

Day :: Integer -> Integer -> Integer -> Date

Train :: Date -> Time -> Time -> Connection

11.06.2025fmidue.github.io/ProPa-Slides

103

Recursive types

• Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

• Values of this type:

Zero, Succ Zero, Succ (Succ Zero), …

• Computation by recursive function definitions:

add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)

11.06.2025fmidue.github.io/ProPa-Slides

104

Recursive types

• With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree

• Values: Leaf, Node Leaf 2 Leaf, …

• Computation:

height :: Tree -> Integer
height Leaf

= 0
height (Node left _ right)
= 1 + max (height left) (height right)

11.06.2025fmidue.github.io/ProPa-Slides

105

Polymorphism in algebraic data types

Just like functions, algebraic data types can be
polymorphic:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

height :: Tree a -> Integer
height Leaf

= 0
height (Node left _ right)
= 1 + max (height left) (height right)

11.06.2025fmidue.github.io/ProPa-Slides

106

Polymorphism in algebraic data types

• Another example, from the standard library:

data Maybe a = Nothing | Just a

• Popular for functions that would otherwise be partial.
• Such as also in a re-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile

aTile :: Tile -> Picture
aTile Block = block
aTile Pearl = pearl
aTile Water = water
aTile Air = air

11.06.2025fmidue.github.io/ProPa-Slides

107

Persistency of data structures

• Note that, just as any other data in Haskell, values of
algebraic data types are immutable.

• For example, we do not change any tree in a function like
this (insertion in binary search trees):

insert :: Integer -> Tree Integer
-> Tree Integer

insert n Leaf = Node Leaf n Leaf
insert n tree@(Node left m right)

| n < m = Node (insert n left) m right
| n > m = Node left m (insert n right)
| otherwise = tree

• Discuss what this means …

11.06.2025fmidue.github.io/ProPa-Slides

Lists as algebraic data type

109

Another example data structure

• If Haskell did not yet have a list type, we could
implement one ourselves:

data List a = Nil | Cons a (List a)

• Example value: Cons 1 (Cons 2 Nil) :: List Int

• Computation:

length :: List a -> Int
length Nil = 0
length (Cons _ rest) = 1 + length rest

11.06.2025fmidue.github.io/ProPa-Slides

110

Lists as just another algebraic data type

• In fact, modulo special syntax, that is exactly what
Haskell lists are:

data [a] = [] | (:) a [a]

• So, for example, [1,2] is simply 1:(2:[]), which
thanks to right-associativity of “:” can also be written
as 1:2:[].

• Functions on lists can then, of course, also be defined
using pattern-matching.

11.06.2025fmidue.github.io/ProPa-Slides

111

Pattern-matching on lists

Some example functions:
length :: [a] -> Int
length [] = 0
length (_:rest) = 1 + length rest

append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

head :: [a] -> a
head (x:_) = x

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

11.06.2025fmidue.github.io/ProPa-Slides

112

Pattern-matching on lists

• Note how clever arrangement of cases/equations can
make function definitions more succinct.

• For example, we might on first attempt have defined
zip as follows:

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip (_:_) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

• But the version from the previous slide is equivalent.
• Both versions also work with infinite lists, btw.

11.06.2025fmidue.github.io/ProPa-Slides

113

Higher-order examples

Also, as another example of a function we have used:
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

And indeed related:
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap _ Leaf = Leaf
treeMap f (Node left x right)
= Node (treeMap f left)

(f x)
(treeMap f right)

11.06.2025fmidue.github.io/ProPa-Slides

114

Higher-order examples

• Also remember the function

foldl1 :: (a -> a -> a) -> [a] -> a

which puts a (left-associative) function/operator
between all elements of a non-empty list.

• It is a member of a whole family of related functions,
the most prominent of which is foldr, defined thus:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ c [] = c
foldr f c (x:xs) = f x (foldr f c xs)

11.06.2025fmidue.github.io/ProPa-Slides

Notes on pattern-matching

116

Evaluation by pattern-matching

• Ultimately, pattern-matching is what drives (lazy)
evaluation in Haskell.

• For example, let us consider how the expression

head (tail (f [3, 3 + 1]))

is evaluated, given the following function definitions
(and the known head and tail functions):

f :: [Int] -> [Int] g :: Int -> Int
f [] = [] g 3 = g 4
f (x:xs) = g x : f xs g n = n + 1

11.06.2025fmidue.github.io/ProPa-Slides

117

Explicit case-expressions

• Pattern-matching is not restricted to the left-hand sides of
function definitions, it can also occur inside expressions,
using the case-keyword.

• For example, instead of something like this:

if maybeThing == Nothing
then … something …
else … something else, using fromJust maybeThing …

we can (and would usually prefer to) write this:

case maybeThing of
Nothing -> … something …
Just thing -> … something else, directly using thing …

11.06.2025fmidue.github.io/ProPa-Slides

118

Binding of variables

• Pattern-matching always binds variable names that occur in
patterns, possibly shadowing existing things of same name.

• That sometimes leads to confusion for beginners, such as
why it does not work to write a function like the following
one (given the existence of red :: Color etc., imported
from CodeWorld):

primaryColor :: Color -> Bool
primaryColor red = True
primaryColor green = True
primaryColor blue = True
primaryColor _ = False

11.06.2025fmidue.github.io/ProPa-Slides

Input / Output
“In short, Haskell is the world’s finest imperative
programming language.”

Simon Peyton Jones

120

Input / Output in Haskell, general approach

• Even in declarative languages, there should be some
(disciplined) way to embed “imperative” commands like
“print something to the screen”.

• In pure functions, no such interaction with the operating
system / user / … is possible.

• And clearly it should not be, since it would defy referential
transparency.

• But there is a special do-notation in Haskell that enables
interaction, and from which one can call “normal” functions.

• All the features and abstraction concepts (higher-order,
polymorphism, …) of Haskell remain available even in and
with do-code.

11.06.2025fmidue.github.io/ProPa-Slides

121

Input / Output in Haskell, very simple example

• Getting two numbers from the user and then printing
some value computed from them to the screen:

main :: IO ()
main = do n <- readLn

m <- readLn
print (prod [n..m])

prod :: [Integer] -> Integer
prod [] = 1
prod (x:xs) = x * prod xs

• Note the (apparent) type inference on n and m.

11.06.2025fmidue.github.io/ProPa-Slides

122

Input / Output in Haskell, the principles

• There is a predefined type constructor IO, such that for
every type like Int, Tree Bool, [(Int,Bool)] etc.,
the type IO Int, IO (Tree Bool), … can be built.

• The interpretation of a type IO a is that elements of
that type are not themselves concrete values, but
instead are (potentially arbitrarily complex) sequences
of input and output operations, and computations
depending on values read in, by which ultimately a
value of type a is created.

• An (independently executable) Haskell program overall
always has an “IO type”, usually main :: IO ().

11.06.2025fmidue.github.io/ProPa-Slides

123

Input / Output in Haskell, the principles

• To actually create “IO values”, there are certain
predefined primitives (and one can recognize their IO-
related character based on their types).

• For example, there are getChar :: IO Char and
putChar :: Char -> IO ().

• Also, for multiple characters, getLine :: IO String
and putStr, putStrLn :: String -> IO ().

• More abstractly, for any type for which Haskell knows
(or was instructed) how to convert from or to strings,
readLn :: Read a => IO a for input as well as
print :: Show a => a -> IO () for output.

11.06.2025fmidue.github.io/ProPa-Slides

124

Input / Output in Haskell, the principles

To combine IO-computations (i.e., to build more complex
action sequences based on the IO primitives), we can use the
do-notation.

Its general form is: do cmd1
x2 <- cmd2
x3 <- cmd3
cmd4
x5 <- cmd5
...

where each cmdi has an IO type and to each xi (if present) a
value of the type encapsulated in the cmdi will be bound (for
use in the rest of the do-block), namely exactly the result of
executing cmdi.

11.06.2025fmidue.github.io/ProPa-Slides

125

Input / Output in Haskell, the principles

• The do-block as a whole has the type of the last cmdn.
• For that last command, generally no xn is present.
• Often also useful (for example, at the end of a do-

block): a predefined function return :: a -> IO a
that simply yields its argument, without any actual IO
action.

• What is never ever, at all, possible or allowed is to
directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the
encapsulated value from an IO computation, i.e., to
simply turn an IO a value into an a value.

11.06.2025fmidue.github.io/ProPa-Slides

126

User defined “control structures”

• As mentioned, also in the context of IO-computations, all
abstraction concepts of Haskell are available, particularly
polymorphism and definition of higher-order functions.

• This can be employed for defining things like:

while :: a -> (a -> Bool) -> (a -> IO a)
-> IO a

while a p body = loop a
where loop x = if p x then do x' <- body x

loop x'
else return x

• Which can then be used thus:

while 0
(< 10)
(\n -> do {print n; return (n+1)})

11.06.2025fmidue.github.io/ProPa-Slides

	Foliennummer 1
	The diversity of programming languages
	A rough plan of the course
	On comments about past exercises
	Foliennummer 5
	Expression-based programming
	Properties of (pure) expressions
	Properties of (pure) expressions
	Properties of (pure) expressions
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	So what?
	Foliennummer 16
	Describing a picture via an expression
	Brief recap from last week
	Describing a picture via an expression
	Describing an animation via a function
	Another example
	Foliennummer 22
	A desire for additional expressivity
	One kind of richer expressions: list comprehensions
	More mundane examples of list comprehensions
	More mundane examples of list comprehensions
	So where are we, expressivity-wise?
	Case distinctions
	Comparison to the situation in imperative setting
	Some usage hints on case distinctions in Haskell
	Foliennummer 31
	“Oddities” of syntax at the type level
	“Oddities” of syntax at the expression/function level
	Layout-sensitivity
	Other syntax remarks
	A specific observation based on exercise submissions
	Specifics about number types
	… and arithmetic operators
	… and arithmetic operators
	Some observations based on past years’ exercises
	Types beside number types
	Foliennummer 42
	Expressing conditional behaviour
	Expressing conditional behaviour
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definitions generally
	Function definitions generally
	Foliennummer 57
	Some observations based on exercise submissions
	Foliennummer 59
	A few words about lists up front
	Examples of existing (first-order) functions on lists
	Different ways of working with lists
	Infinite lists
	Infinite lists
	An interesting function on finite lists
	Foliennummer 66
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions in other languages
	Inference of polymorphic types
	Consequences of polymorphic types
	Foliennummer 77
	Higher-order functions
	The types of higher-order functions
	The types of higher-order functions
	Functions to pass to higher-order functions
	Some syntactic specialties
	Lambda-abstractions
	Lambda-abstractions
	Usefulness of higher-order functions
	Foliennummer 86
	Higher-order functions on lists
	Higher-order functions on lists
	Higher-order functions on lists
	Relationship to list comprehensions
	Relationship to list comprehensions
	Relationship to list comprehensions
	Expressing laws
	Foliennummer 94
	Types in Haskell
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	General algebraic data types
	General algebraic data types
	Recursive types
	Recursive types
	Polymorphism in algebraic data types
	Polymorphism in algebraic data types
	Persistency of data structures
	Foliennummer 108
	Another example data structure
	Lists as just another algebraic data type
	Pattern-matching on lists
	Pattern-matching on lists
	Higher-order examples
	Higher-order examples
	Foliennummer 115
	Evaluation by pattern-matching
	Explicit case-expressions
	Binding of variables
	Foliennummer 119
	Input / Output in Haskell, general approach
	Input / Output in Haskell, very simple example
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	User defined “control structures”

