UNIVERSITAT

DEUs | SSEBNU RG

Open-Minded

Programming Paradigms — Haskell part

Summer Term 2025

UNIVERSITAT

‘ nEuslssEBNu RG

The diversity of programming languages

Open-Minded

Some relevant distinctions:

« syntactically rich vs. syntactically scarce (e.g., APL vs. Lisp)
« verbosity vs. succinctness (e.g., COBOL vs. Haskell)

« compiled vs. interpreted (e.g., C vs. Perl)

« domain-specific vs. general purpose (e.g., SQL vs. Java)

« sequential vs. concurrent/parallel (e.g., JavaScript vs. Erlang)
« typed vs. untyped (e.g., Haskell vs. Prolog)

« dynamic vs. static (e.g., Ruby vs. ML)

« declarative vs. imperative (e.g., Prolog vs. C)

* object-oriented vs. ??7?

fmidue.github.io/ProPa-Slides 11.06.2025 2

UNIVERSITAT
DUISBURG

A rough plan of the course o PSSRy
Open-Minded

« We will focus on two paradigms: functional and logic
programming.

* For each, we pick at least one specific language:
Haskell (and Eim), Prolog.

 We consider actual programming concepts, and also
some aspects related to semantics (evaluation).

« With Haskell, we explore typing concepts like
inference, genericity, polymorphism.

 We (can) discuss and compare concepts like variables
and bindings, expressions vs. commands, control and
abstraction features, etc., in different languages.

fmidue.github.io/ProPa-Slides 11.06.2025 3

UNIVERSITAT
DUISBURG

On comments about past exercises W CesE

“There were too many exercises. It took me about two
days to get a working solution for only one exercise. |
should note that | would have been able to solve the tasks
for example in Python or Java in about an hour so | think
the problem were not my general! programming skills.”

“Autotool rejects programs that do what they are
supposed to do by the task too often so | have to invest
an additional day to rewrite it.”

“Except for the animation exercises ...”

fmidue.github.io/ProPa-Slides 11.06.2025 4

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Expressions vs. commands

DUISBURG

Expression-based programming N %S

* Proposition:
Functional programming is about expressions,
whereas imperative programming is about commands.

« Some kinds of expressions you (probably) know:
2+3-(x+1)>
pA-(qVrT)
SUMIF(A1:A8,"<0")

« Generally: terms in any algebra, built from constants
and functions/operators, possibly containing variables

fmidue.github.io/ProPa-Slides 11.06.2025 6

UNIVERSITAT

‘ nEuslssEBNu RG

Properties of (pure) expressions

Open-Minded

Expressions

« ... are compositional, built completely from
subexpressions,

« ... often have a meaningful type,

* ... have a value, which does not depend on “hidden
influences”, and does not change on re-evaluation or
based on the order of evaluating subexpressions.

The compositionality is not just syntactical (expressions
are built from subexpressions), but extends to typing and
semantics/evaluation.

fmidue.github.io/ProPa-Slides 11.06.2025 7

UNIVERSITAT
‘ DUISBURG

ESSEN

Properties of (pure) expressions

Example 2 + 3 - (x + 1)%:
The constants are 1, 2, 3 of type Z.
The operatorsare +:Z X Z—>Z,-:Z X Z—>Z,)*:Z > 7.

The value of 2 + 3 - (x + 1)? depends only on the value of
2 and the value of 3 - (x + 1)?, the latter only depends on
the value of 3 and the value of (x + 1)?, ...

fmidue.github.io/ProPa-Slides 11.06.2025 8

DUISBURG

Properties of (pure) expressions N "'

 Thanks to these properties, we can easily use notation
known from mathematics, for example reformulating
“2+3-(x+1)?” as follows:
“2+3-y*wherey =x+1".

« Also, we can apply simplifications, for example
replacing exponentiation by multiplication:
“2+3-y-ywherey=x+1".

 And while this example was about arithmetic
expressions, the concepts apply much more generally.

« But only if we have pure expressions!

fmidue.github.io/ProPa-Slides 11.06.2025 9

The situation in imperative programming languages

UNIVERSITAT

‘ nEuslssEBNu RG

Open-Minded

 So what is different in imperative programming?

 Don’t we also have expressions there?
For example in:
b = 100000;
if (z > 0) {
z = 100 + z;
J=0;
while (b < 200000) {
b=>b*z / 100;
=3+ 1;}
} else j = -1;

syntactical construct. Commands are!

* Yes, there are expressions, but they are not the dominating

fmidue.github.io/ProPa-Slides 11.06.2025

10

UNIVERSITAT

The situation in imperative programming languages W S R 6
Open-Minded

 Why is this difference relevant? What properties do commands, as
opposed to expressions, not have?

« Well, for example, they are not even syntactically compositional:
Not every well-formed smaller part of a command is itself a
command.

while (b < 200000) {
b=Db*z / 100;
j =3+ 1;
}
* Instead, expressions occur, also keywords, ...
 Moreover, commands do not always have a meaningful type.

* Or even just a value. (Try giving a value for the above block.)

fmidue.github.io/ProPa-Slides 11.06.2025 11

UNIVERSITAT
DUISBURG

The situation in imperative programming languages b
Open-Minded

 As a consequence, we cannot name arbitrary well-formed smaller
parts (as opposed to what we saw for expressions and their
subexpressions).

 For example, we cannot simply write:

body = {
b=b*z/100;
=3+ 1;

}
while (b < 200000) body;

 Even workarounds involving “functions”/procedures/methods are
not as flexible and useful as the kind of mathematical notation for
expressions: “2 + 3 - y> wherey = x + 1”.

fmidue.github.io/ProPa-Slides 11.06.2025 12

UNIVERSITAT
DUISBURG

The situation in imperative programming languages W S
Dpen-Minded

« Okay, so what about the sublanguage of expressions in an
imperative language? Can they, at least, be treated as we saw
before?

 Not in general! For example, we saw that mathematically we
should be able to rewrite something like “exp, + exp, - (exp3)?” as
any of:

exp, + exp, - var? where var = exps

exp, + exp, - var - var where var = exps

exp; + exp, - exps - exps

- But code snippets like “result = exp, + exp, * (exp;)*2;’
do not always take well to being replaced by:

var = exp,;; result = exp;, + exp, * var"2;

... or by code snippets corresponding to the other expression
alternatives above.

fmidue.github.io/ProPa-Slides 11.06.2025 13

UNIVERSITAT

' DEUSISSEBNU RG

The situation in imperative programming languages

Dpen-Minded

* Indeed, consider these four code snippets:

result = exp;, + exp, * (exp;)”*2;

var = exp,; result = exp; + exp, * var*2Z;
var = exp,;; result = exp, + exp, * var * var;
result = exp, + exp, * exp; * exp,;;

- And imagine instantiations with exp; being the “expression” i++
or some invocation £ () for a procedure/method £.

 The problem is that expressions in an imperative language are
typically not pure expressions. Instead, they have side-effects!

« (For same reason, re-evaluation of an expression can change the
value. And order of evaluating subexpressions becomes relevant.)

fmidue.github.io/ProPa-Slides 11.06.2025 14

SO Whatr) ‘ nEuslssEBNu RG

 So, how “bad” is all that?

* Do these artificial examples “prove” anything?

 Well, | haven’t (yet?) really argued that the pure
expression-based style is better in some sense.

« But what should have become clear is that it is
different!

fmidue.github.io/ProPa-Slides 11.06.2025 15

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

A look at FP with CodeWorld

UNIVERSITAT

Describing a picture via an expression N PSR R
Open-Minded

A rather simple example:
main :: IO ()

main = drawingOf scene

scene :: Picture

scene = circle 0.1 & translated 3 0 (colored red triangle)

triangle :: Picture

triangle = polygon [(0,0),(1,-0.5),(1,0.5)]

Let us discuss this from the “expression” perspective ...

fmidue.github.io/ProPa-Slides 11.06.2025 17

UNIVERSITAT
DUISBURG

Brief recap from last week W SN

 Expressions: syntactic structures one could imagine
after the “=" in an assignment “var = ..” in C or Java.

« Values: results of evaluating expressions, obtained by
combining values of subexpressions.

« Commands: syntactic structures that are characterized
not so much by what (if anything at all) they evaluate
to, but rather by what effect they have (change of
storage cells, looping, etc.).

* In a pure setting without commands, any two
expressions that have the same value can be replaced
for each other, without changing the behaviour of the
program.

fmidue.github.io/ProPa-Slides 11.06.2025 18

UNIVERSITAT
DUISBURG

Describing a picture via an expression W %'y
Open-Minded

Observations:
« Compositionality on level of syntax, types, and values.
* Pictures are expressions/values here, can be named etc.

* Functions/operators used:

circle : R - Picture
polygon : [RXR] — Picture
colored : Color X Picture — Picture

translated : R X R X Picture — Picture

& : Picture X Picture — Picture

* Properties like: translated a b (colored c d)
colored ¢ (translated a b d)

fmidue.github.io/ProPa-Slides 11.06.2025 19

UNIVERSITAT

Describing an animation via a function N PSR R
Open-Minded

A slight variation of example from last week:
main :: IO ()

main = animationOf scene

scene :: Double -> Picture

scene t = translated t 0 (colored red triangle)

 Dependence on time expressed via parameter t.

« That parameter is never set by us ourselves for the animation.
 No for-loop or other explicit control.

 |Instead, the animationOf construct takes care “somehow”
(this involves evaluating scene for different t).

fmidue.github.io/ProPa-Slides 11.06.2025

20

UNIVERSITAT

' DEUSISSEBNU RG

Another example

Dpen-Minded

« Mathematically describing dynamic behaviour as a function of
time should not be much of a surprise.

A well-known physics example: ‘/4, _
x(t) = vox - t \\\
_ g .2 4
)’(t)—VOy't_E't , \\\
/

 As a program:
scene :: Double -> Picture
scene t = cliff & translated x y (circle 0.1)
where x = 3 * t
y=6%* t - 9.81/ 2 * t~2
cliff = polyline [(-5,0),(0,0), (0,-2)]

fmidue.github.io/ProPa-Slides 11.06.2025 21

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Rich expressions

UNIVERSITAT
DUISBURG

A desire for additional expressivity W 'S

In the CodeWorld examples today, we have already
expressed continuous distribution, throughout time,
via functions.

What if we also, or alternatively, want a discrete
distribution, “throughout space”?

So, instead of one triangle moving in time, we want
several static triangles at different places.

But we do not really want to replicate these “by hand”.
Maybe now is the time for a for-loop?

No, we don’t have that.

« But wh we have in ?

fmidue.github.io/ProPa-Slides 11.06.2025

23

UNIVERSITAT

One kind of richer expressions: list comprehensions -
Dpen-Minded

Using a list comprehension:
main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5] 1)

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

 With pictures :: [Picture] -> Picture.
 And alist comprehension [scene d | d <- [0..5] 1.

* This is not exactly like a for-loop, for several reasons.

* Instead, it is like a mathematical set comprehension{2-n|n e N }.

fmidue.github.io/ProPa-Slides 11.06.2025

24

UNIVERSITAT

‘ nEuslssEBNu RG

More mundane examples of list comprehensions

Open-Minded

> [1,3..10]
[1,3,5,7,9]

> [x*2 | x <- [1..10], even x]
[4,16,36,64,100]

> [v | x<-[1..10], let y = x*2, mod y 4 == 0]
[4,16,36,64,100]

> [x * Yy I x <- [1/2/3]I Y <- [1/2/3]]
[1,2,3,2,4,6,3,6,9]

fmidue.github.io/ProPa-Slides 11.06.2025 25

UNIVERSITAT

‘ nEuslssEBNu RG

More mundane examples of list comprehensions

Dpen-Minded

> [(XIY) | x <- [1121311 y <- [4,5] 1
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [(x,5) | y <= [4,3], x <- [1,2,3]]
[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

> [(x,y) | x<-1[1,2,3], y <- [1..x]]
[(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

> [X ++ y l (x,y) <_ [("a" , "b") , ("c" , "d")]]
["ab","cd"]

fmidue.github.io/ProPa-Slides 11.06.2025 26

UNIVERSITAT
DUISBURG

So where are we, expressivity-wise? W %Sy
Open-Minded

Some takeaways from examples we have seen:

* Non-constant behaviour expressed as functions, in the
mathematical sense. f(x) = -

 Such a description defines the behaviour “as a whole”, not
in a “piecemeal” fashion.

 For example, there is no “first run this piece of animation,
then that piece, and then something else”.

« Actually, there is not even a concept of “this piece of
animation stops at some point”.

Of course, we should be able to also express possibly non-
continuous behaviours. But we are not resorting to sequential
commands, with imperative keywords or semicolons etc.

List comprehensions are also not the answer, because they do
not define functions, just (list) values. Instead, ...

fmidue.github.io/ProPa-Slides 11.06.2025 27

UNIVERSITAT
DUISBURG

Case distinctions - EEAREN
Open-Minded

« Switching by conditional expressions:

scene :: Double -> Picture

scene t = if t < 3
then translated t t (circle 1)
else blank

* This is very much in line with case distinctions in
mathematical functions:

—X, ifx<0
X, else

f(x)={

fmidue.github.io/ProPa-Slides 11.06.2025 28

UNIVERSITAT

‘ nEuslssEBNu RG

Comparison to the situation in imperative setting

Open-Minded

« In C/Java we have two forms of if on commands:

if
if

}

R I |
R I | } else { ... }

* In an expression language, the form without else does not make
sense, so in Haskell we always have:

if ... then ... else

* This corresponds to C/Java’s conditional operator:

?

fmidue.github.io/ProPa-Slides 11.06.2025 29

UNIVERSITAT
DUISBURG

Some usage hints on case distinctions in Haskell W S
Dpen-Minded

* Pragmatically, an if-then-else expression “without an else”
would be realized by having some “neutral value” in the else-

branch. Remember:

scene :: Double -> Picture

scene t = i1if £t < 3
then translated t t (circle 1)
else blank

« Similarly, in a list context: if condition then list else []

« Also, do not hesitate to use if-then-else as subexpressions

freely:
f xy (1f exp; then exp, else exp,)

= 1if exp; then f x y exp, else f x y exp,

fmidue.github.io/ProPa-Slides 11.06.2025 30

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Some remarks on syntax and types

UNIVERSITAT

“Oddities” of syntax at the type level W LIS R

Open-Minded

Instead of:
circle : R - Picture
polygon : [RXR] — Picture
colored : Color X Picture — Picture
translated : R X R X Picture — Picture
& : Picture X Picture — Picture

type signatures actually look like this:

circle :: Double -> Picture

polygon :: [(Double, Double)] -> Picture
colored :: Color -> Picture -> Picture

translated :: Double -> Double -> Picture -> Picture

(&) :: Picture -> Picture -> Picture

fmidue.github.io/ProPa-Slides 11.06.2025 32

UNIVERSITAT
DUISBURG

“Oddities” of syntax at the expression/function level N "'
Open-Minded

* Instead of £(x) and g(x,y,z),wewrite £ x and g x y z.

« As an example for nested function application, instead of
g(x,£f(y),z),wewrite g x (f y) =z

« The same syntax is used at function definition sites, so something
like

float f£(int a, char b)
{ ...}

in C or Java would correspond to

f :: Int -> Char -> Float
f ab =

in Haskell.

fmidue.github.io/ProPa-Slides 11.06.2025 33

UNIVERSITAT

' DEUSISSEBNU RG

Layout-sensitivity

Dpen-Minded

In Haskell, this:

let y =a *b
fx=(x+y) /vy
in fc+ £d

is equivalent to:

let { y=a *b; £fx=(x+vy) / vy}
in fc+ £d

But these are not accepted:

let y =a *b let y =a *b
fx=(x+vy) /vy fx=(x+y) /vy
in fc+ £d in fc+ £ d

fmidue.github.io/ProPa-Slides 11.06.2025 34

UNIVERSITAT
DUISBURG

Other syntax remarks 0 DSy

 Haskell beginners tend to use unnecessarily many
brackets. For example, no need to write £ (g (x)) or
(f x) + (gy),sincef (gx)andf x + gy
suffice.

* Further brackets can sometimes be saved by using the
$ operator, for example writing f $ g x $ h y instead
of £ (g x (h y)).ldon’tlike it in beginners’ code.

 We let Autotool give warnings about redundant
brackets, as well as about overuse of S.
Sometimes we enforce adherence to those warnings.

fmidue.github.io/ProPa-Slides 11.06.2025 35

UNIVERSITAT

' DEUSISSEBNU RG

A specific observation based on exercise submissions

Dpen-Minded

If you have repeated occurrences of a common subexpression,
share them! For example, instead of something like this:

scene t =
if 8 * sin t > 0
then translated (8 * cos t) (8 * sin t)
else

rather write this:

scene t =
let x = 8 * cos t
y = 8 * sin t
in if y > 0 then translated xy ... else

fmidue.github.io/ProPa-Slides 11.06.2025 36

UNIVERSITAT
DUISBURG

Specifics about number types - ERSER

Open-Minded

 Haskell has various number types: Int, Integer,
Float, Double, Rational, ...

 Number literals can have a different concrete type
depending on context,e.g., 3 :: Int,3 :: Float,
3.5 :: Float, 3.5 :: Double

 For general expressions there are overloaded
conversion functions, for example fromIntegral with,

among others, any of the types Int -> Integer,
Integer -> Int, Int -> Rational, ..., and
truncate, round, ceiling, £loor, each with any of
the types Float -> Int, Double -> Integer,...

fmidue.github.io/ProPa-Slides 11.06.2025 37

UNIVERSITAT

.. and arithmetic operators W oIS R G
Open-Minded

 Operators are also overloaded, and often no
conversion is necessary, for examplein3 + 4.5 or

also in:

f x 2 * x + 3.5
gy=£f4/y

* In other cases, conversion is necessary, for example in
this:
£ Int -> Float
f x =2 * fromIntegral x + 3.5
or:
f x 2 * x + 3.5
gy = f (fromIntegral (length "abcd")) / y

fmidue.github.io/ProPa-Slides 11.06.2025 38

UNIVERSITAT

.. and arithmetic operators W oIS R
Open-Minded

« Some operators are available only at certain types, e.g.,
no division symbol “/” on integer types.

* Instead, the functiondiv :: Int -> Int -> Int
(also on Integer).

« Binary functions (not just arithmetic ones) can be used
like operators, for example writing 17 “div" 3 instead
of div 17 3.

« Useful mathematical constants and functions exist,
e.g., pi, sin, sqrt, min, max, ...

fmidue.github.io/ProPa-Slides 11.06.2025 39

UNIVERSITAT
DUISBURG

Some observations based on past years’ exercises W e
Dpen-Minded

* In case of doubt concerning number conversions, it
usually does not hurt to add some fromIntegral-

calls, which in the worst case will be no-ops (since,
among others, fromIntegral :: Int -> Int).

* Itis always a good idea to write down type signatures
for (at least) top-level functions. Among other benefits,
it saves you from having to deal with (errors involving)

types like:
fun :: (Floating a, Ord a) => a -> a

fmidue.github.io/ProPa-Slides 11.06.2025 40

UNIVER SITAT

‘ nEuslssEBNu RG

Types beside number types

Dpen-Minded

Other pre-existing types:

* Type Bool, with values True and False and operators
&&, | |, and not.

 Type Char, with values 'a’', 'b', ..., '\n' etc., and
functions succ, pred, as well as comparison operators.

 Listtypes: [Int], [Bool], [[Int]], ..., with various
pre-defined functions and operators.

« Character sequences: type String = [Char], with
special notation "abc" instead of ['a', 'b', 'c'].

 Tuple types: (Int,Int), (Int,String,Bool),
((Int,Int) ,Bool, [Int]), also [(Bool,Int)] etc.

fmidue.github.io/ProPa-Slides 11.06.2025 41

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Programming by case distinction

(more ways of doing it)

UNIVERSITAT

' DEUSISSEBNU RG

Expressing conditional behaviour

Dpen-Minded

Remember:

« Switching by conditional expressions:

scene :: Double -> Picture
scene t = if t < 3
then translated t t (circle 1)

else blank

* This is very much in line with case distinctions in
mathematical functions:

_=x, ifx<O0
f(x) = { X, else

fmidue.github.io/ProPa-Slides 11.06.2025

43

UNIVERSITAT

' DEUSISSEBNU RG

Expressing conditional behaviour

Dpen-Minded

* Likely not yet seen, function definition using guards:

scene t
t <=p1 =
pi < t && t <= 2 * pi =
2 * pi < t —

« This is again similar to mathematical notation:

(0, ifx<0
f(x) =1x, if0<x<1
1, ifx>1

fmidue.github.io/ProPa-Slides 11.06.2025 44

UNIVERSITAT

‘ nEuslssEBNu RG

Function definition using guards

Dpen-Minded

 Let us discuss some details based on this example:

factorial :: Integer -> Integer
factorial n

| n == 0=1

| n > 0 = n * factorial (n - 1)

* First of all, what about the order of clauses?
« Well, in this example, the following variant is equivalent:

factorial :: Integer -> Integer
factorial n
| n >0 = * factorial (n - 1)

n
| n == = 1

fmidue.github.io/ProPa-Slides 11.06.2025

45

UNIVERSITAT

‘ nEuslssEBNu RG

Function definition using guards

Dpen-Minded

« What if the guard conditions overlap?
* Then this is okay:

factorial :: Integer -> Integer
factorial n

| n==0=1

| n > 0 = n * factorial (n - 1)

but this is problematic:

factorial :: Integer -> Integer
factorial n
| n > 0 = n * factorial (n - 1)
| n == =1

« Always the first matching clause is used!

fmidue.github.io/ProPa-Slides 11.06.2025

46

UNIVERSITAT

' DEUSISSEBNU RG

Function definition using guards

Dpen-Minded

« Even with the “correct” order:

factorial :: Integer -> Integer
factorial n

| n == 0=1

| n > 0 = n * factorial (n - 1)

we can have problems with some inputs.

* If no clause matches, we get a runtime error!

fmidue.github.io/ProPa-Slides 11.06.2025 47

UNIVERSITAT
DUISBURG

Function definition using guards N %'y
Open-Minded

* In fact, if called with appropriate settings, the compiler
warns us of a potential runtime error ahead of time.

« We can avoid both the warning and the actual non-
exhaustiveness error at runtime by having a “catch-all”

clause:
factorial :: Integer -> Integer
factorial n
| n == = 1

n * factorial (n - 1)

| otherwise

fmidue.github.io/ProPa-Slides 11.06.2025 48

UNIVERSITAT

' DEUSISSEBNU RG

Function definition using guards

Dpen-Minded

* In this specific case, negative inputs would still be a
problem.

 Which we could remedy as follows:

factorial :: Integer -> Integer
factorial n

| n <= 0 =1

| otherwise = n * factorial (n - 1)

« Some lessons: order matters (and can be exploited),
exhaustiveness matters. Also, some further aspects...

fmidue.github.io/ProPa-Slides 11.06.2025 49

UNIVERSITAT

Function definition using guards W S R 6
Open-Minded

« The compiler’s checks ahead of time are nice, but
necessarily not perfect.

 For example, it cannot in general detect infinite recursion
ahead of time. (The Halting Problem!)

 Even the “simpler” static exhaustiveness checks are not as
powerful as one might sometimes hope.

 For example, one might hope that something like this:

y

f x
|
| y

R
I
I

/

is statically determined safe. But no (and for good reason).
So it is usually better to use an explicit otherwise clause.

fmidue.github.io/ProPa-Slides 11.06.2025 30

UNIVERSITAT
DUISBURG

Function definition using guards N %'y
Open-Minded

* Also, the more desirable “fix” to the issue of possible
negative inputs for

factorial :: Integer -> Integer
factorial n

| n == = 1

| otherwise = n * factorial (n - 1)

(instead of switching to n <= 0 in the first clause)

would be to statically prevent negative inputs from
occurring at all, via the type system.

 But that is a topic for another lecture.

fmidue.github.io/ProPa-Slides 11.06.2025 o1

UNIVERSITAT
DUISBURG

Function definition using guards W eIy
Open-Minded

 For now, let us apply our insights to this situation
considered earlier:

scene t
| £t <= pi =
| p1 < t && t <= 2 * pi =
| 2 * pi < t =

 Here is how this should probably look instead:

scene t
| £ <= pi
| £t <=2 * pi
| otherwise

fmidue.github.io/ProPa-Slides 11.06.2025 52

UNIVERSITAT
DUISBURG

Function definition using guards W S
Dpen-Minded

Some further syntactic variations:

factorial :: Integer -> Integer
factorial n | n == =1
factorial n | otherwise = n * factorial (n - 1)

factorial :: Integer -> Integer

factorial n | n == 0 =1

factorial n = n * factorial (n - 1)
factorial :: Integer -> Integer

factorial 0 =1

factorial n = n * factorial (n - 1)

fmidue.github.io/ProPa-Slides 11.06.2025 53

UNIVERSITAT
DUISBURG

Function definition using guards IS
Open-Minded

Another example:

ackermann :: Integer -> Integer -> Integer
ackermann 0 n n>0=n4+1
ackermann m O m >0 = ackermann (m - 1) 1
ackermann m n m>0 & n > 0

= ackermann (m - 1) (ackermann m (n - 1))

This one gives some interesting non-exhaustiveness
warnings.

fmidue.github.io/ProPa-Slides 11.06.2025 54

UNIVERSITAT

‘ nEuslssEBNu RG

Function definitions generally

Open-Minded

General rules for function definitions:

 One or more equations, with or without guards.

 One or more arguments; so far, only variable names
(can be anonymous) or constants.

* Uniqueness of variable names within one equation.

* Never expressions, in argument position at definition
sites, that would require computation or “solving”.

fmidue.github.io/ProPa-Slides 11.06.2025 55

Function definitions generally

UNIVERSITAT

‘ nEuslssEBNu RG

Dpen-Minded

A few more examples:

not :: Bool -> Bool
not True = False
not'_ = True

(&&) :: Bool -> Bool -> Bool
True && True = True
&& = False

(&&) :: Bool -> Bool -> Bool
b && True = Db
&& = False

fmidue.github.io/ProPa-Slides 11.06.2025

56

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Specific observations from exercises

UNIVERSITAT
‘ DUISBURG

ESSEN

Some observations based on exercise submissions

Dpen-Minded

Almost every time one sees a use of access-by-index in
Haskell code, it was not the best choice of expression.

A typical case is if something corresponding to this:

whatever [computeFrom argument
| argument <- list]

was instead written like this:

whatever [computeFrom (list !! index)
| index <- [0.. (length list - 1)]]

fmidue.github.io/ProPa-Slides 11.06.2025 58

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Generally working with lists

ESSEN

UNIVERSITAT
‘ DUISBURG

A few words about lists up front

 We will consider a lot of examples in the lecture and
exercises that deal with lists.

« But that is mostly for didactical reasons. In the “real
world”, there are often more appropriate data
structures (and we will eventually see how to define
them ourselves).

* In part due to historical precedent (Lisp), Haskell has a
very rich library of list processing functions.

It also has specific syntactical support for lists (e.g.,
list comprehensions).

« As already mentioned, Haskell lists are homogeneous.

fmidue.github.io/ProPa-Slides 11.06.2025 60

UNIVERSITAT

Examples of existing (first-order) functions on lists W ISR R
Open-Minded

take 3 [1..10] == [1,2,3]

drop 3 [1..10] == [4,5,6,7,8,9,10]

null [] == True

null "abcde" == False

length "abcde" == 5

head "abcde" == 'a'

last "abcde" == 'e'

tail "abcde" == "bcde"

init "abcde" == "abcd"

splitAt 3 "abcde" == ("abc","de")

"abcde" !! 3 == 'd’

reverse "abcde" == "edcba"

"abc" ++ "def" == "abcdef"

zip "abc" "def" == [("a','d"),('b','e"),('c","£")]

concat [[1,2],[1,[3]] == [1,2,3]

fmidue.github.io/ProPa-Slides 11.06.2025 61

UNIVERSITAT

Different ways of working with lists W OISR R G

Open-Minded

We now have certain choices, such as whether to work
with recursion or by just combining existing functions
(and possibly list comprehensions).

For example:

isPalindrome :: String -> Bool
isPalindrome s | length s < 2 = True
isPalindrome s = head s == last s &&

isPalindrome (init (tail s))
VS..

isPalindrome :: String -> Bool
isPalindrome s = reverse s == s

fmidue.github.io/ProPa-Slides 11.06.2025 62

UNIVERSITAT
‘ DUISBURG

ESSEN

Infinite lists

* In Haskell there are even expressions and values for
infinite lists, for example:

[1,3..]
[n*2 | n <- [1..]]

[1,3,5,7,9,...]
[1,4,9,16,...]

 And while we of course cannot print complete such
lists, we can still work normally with them, as long as
the ultimate output is finite:

take 3 [n*2 | n<- [1..]1] == [1,4,9]
zip [0..] "ab" == [(0,'a"),(1,'Db")]

fmidue.github.io/ProPa-Slides 11.06.2025

63

UNIVERSITAT
‘ DUISBURG

ESSEN

Infinite lists

Dpen-Minded

But there is no mathematical magic at work, so for
example this:

[m | m<- [n*2 | n<- [1..]], m < 100]

will “hang” after producing a finite prefix.

Why is that, actually?

fmidue.github.io/ProPa-Slides 11.06.2025

64

UNIVERSITAT
DUISBURG

An interesting function on finite lists) e
Dpen-Minded

Essentially Quicksort:

sort :: [Integer] -> [Integer]

sort [] = []

sort list =

let
pivot = head 1list
smaller = [x | x <- tail list, x < pivot]
greater = [x | x <- tail list, x >= pivot]

in sort smaller ++ [pivot] ++ sort greater

fmidue.github.io/ProPa-Slides 11.06.2025 65

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Polymorphic types

DUISBURG

Polymorphic functions on lists N %S
Open-Minded

- Remember that each Haskell list is homogeneous, i.e.,
cannot contain elements of different types.

"abc" : ¢ [Char]
[1,2,3] :: [Integer]
['a',2] -- ill-typed

» At the same time, functions and operators on lists can
be used quite flexibly:

reverse "abc" == "cba"
reverse [1,2,3] == [3,2,1]
"abec" ++ "def" == "abcdef"
[1,2] ++ [3,4] == [1,2,3,4]

 We have already depended on this flexibility a lot!

fmidue.github.io/ProPa-Slides 11.06.2025 67

Polymorphic functions on lists § o R
Open-Minded

« So there should be a way to reconcile the rigidity of
types with flexible use of functions.

« We want to be able to write
"abe" ++ "def" and [1,2] ++ [3,4],
as well as
elem 2 [1,2] and elem 'c' "ab'",
but at the same time prevent calls like

"ab" ++ [3,4] and elem 'a' [1,2,3].

fmidue.github.io/ProPa-Slides 11.06.2025 68

DUISBURG

Polymorphic functions on lists N ey

 So what are the types of functions like those seen?

 We do not have, and clearly do not want, different
functions like reverseChar :: [Char] -> [Char]
and reverseInteger :: [Integer] -> [Integer].

« Instead, we use type variables, as in:

reverse :: [a] -> [a]

 That is not, at all, like being untyped. For example, the
type (++) :: [a] -> [a] -> [a] does not mean
that “anything goes”.
(Still not possible to write this: "ab" ++ [3,4].)

fmidue.github.io/ProPa-Slides 11.06.2025 69

u
DUISBURG

Polymorphic functions on lists ES'SEPN
Open-Minded

 We have already seen a lot of functions that fit this

pattern:

head :: [a] -> a
tail :: [a] -> [a]
last :: [a] > a
init :: [a] -> [a]
length :: [a] -> Int
null :: [a] -> Bool
concat :: [[a]l]l] -> [a]

* In concrete applications, the type variable gets
instantiated appropriately: head "abc" :: Char.

fmidue.github.io/ProPa-Slides 11.06.2025 70

UNIVERSITAT
DUISBURG

Polymorphic functions on lists N Sy
Open-Minded

« Of course, a polymorphic function does not need to be
polymorphic in all its arguments.

 For example:

(') :: [a] -> Int -> a

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a], [a])

 And what about zip?

fmidue.github.io/ProPa-Slides 11.06.2025 71

Polymorphic functions on lists W DY SBURG

ESSEN

 The function zip also takes homogeneous lists as
arguments.

But unlike the case of (++), where we want to allow

"ab" ++ "ed" and [1,2] ++ [3,4], but to disallow

"ab" ++ [3,4], for zip we want to allow all of the
following:

zip LA ab" LA cd"
zip [1,2] [3,4]
zip "ab" [3,4]

« So the type cannot be like that for (++):
[a] -> [a] -> ...

fmidue.github.io/ProPa-Slides 11.06.2025 72

DUISBURG

Polymorphic functions on lists W DS
Open-Minded

 |nstead:
zip :: [a] -> [b] -> [(a,b)]

« Different type variables can be, but do not have to be,
instantiated by different types.

 Hence, all of these make sense:
zip "ab" "ecd" -- a = Char, b = Char
zip [1,2] [3,4] -- a Int, b = Int
zip "ab" [3,4] -—- a Char, b = Int

« Whereas a mixed call for (++) does not:
"ab" ++ [3,4] -— a = Char or Int-?

fmidue.github.io/ProPa-Slides 11.06.2025 73

UNIVERSITAT
DUISBURG

Polymorphic functions in other languages W eI
Open-Minded

« Have you seen something like those types in another
language before?
 Example in Java with Generics:

<T> List<T> reverse (List<T> list)
{ ...}

corresponding to:

reverse :: [a] -> [a]
reverse list =

fmidue.github.io/ProPa-Slides 11.06.2025 74

DUISBURG

Inference of polymorphic types N 'S

 One aspect (among several) that distinguishes
polymorphism in Haskell and its FP predecessors from
most of those other languages is type inference.

 We need not declare polymorphism, since the compiler
will always infer the most general type automatically.

 For example, for £ (x,y) = x the compiler infers
f :: (a,b) -> a.

 Andfor g (x,y) = if pi > 3 then x else vy,
g :: (a,a) -> a.

fmidue.github.io/ProPa-Slides 11.06.2025 75

UNIVERSITAT
DUISBURG

Consequences of polymorphic types N "I
Open-Minded

 Polymorphism has really interesting semantic
consequences.

 For example, it is not hard to convince ourselves that

always:
reverse [£f a | a <- list]
= [£f a | a <- reverse list]

« But what if | told you that this holds, for arbitrary £ and
list, not only for reverse, but for any function with
type [a] -> [a], no matter how it is defined?

« Can you give some such functions (and check the
above claim on an intuitive level)?

fmidue.github.io/ProPa-Slides 11.06.2025 76

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Higher-order functions

UNIVER SITAT

' DEUSISSEBNU RG

Higher-order functions

Dpen-Minded

« So far, we have mainly dealt with first-order functions,
that is, functions that take “normal data” as input
arguments and ultimately return some value.

 But we have also already seen functions to which we

passed other functions as arguments. For example,
quickCheck and animationOf.

* Indeed, let us take a look at the type of the latter:
animationOf :: (Double -> Picture) -> IO ()

Note: Every function is a (mathematical) value, but not
every value is a function.

fmidue.github.io/ProPa-Slides 11.06.2025 78

UNIVERSITAT

The types of higher-order functions Y Oe''sSEB\Y R 6
Open-Minded

 The type

animationOf :: (Double -> Picture) -> IO ()

means something completely different than the type

animationOf :: Double -> Picture -> IO ()

* Indeed, parentheses in such places are very significant.

* Let us discuss this based on a simpler example type.

fmidue.github.io/ProPa-Slides 11.06.2025 79

‘ nEuslssEBNu RG

The types of higher-order functions

What are some functions of the following type?

f :: Int -> Int -> Int

And what about the following type?

f :: (Int -> Int) -> Int

What kinds of inputs does either of these take?

And what can they do with their inputs?

fmidue.github.io/ProPa-Slides 11.06.2025 80

UNIVERSITAT

‘ nEuslssEBNu RG

Functions to pass to higher-order functions

Dpen-Minded

 Where do we get functions from that we can pass as
arguments to higher-order functions?

« Well, in Haskell functions are almost everywhere, right?
So we should not have any shortage of supply.

« Of course, there are many predefined functions already.

 We could also use functions we have explicitly defined
in our program (such as passing your own scene
function to animationOf).

* Or partial applications of any of those. For example,
(+) :: Int -> Int -> Int,and as aconsequence,
(+) 5 :: Int -> Int.

fmidue.github.io/ProPa-Slides 11.06.2025 81

UNIVERSITAT
DUISBURG

Some syntactic specialties N ISRy
Open-Minded

* Indeed, the type Int -> Int -> Int could be read as
Int -> (Int -> Int).

 But those parentheses can be omitted.

 Two viewpoints here: a function that takes two Int
values and returns one Int value, or a function that
takes one Int value and returns a function that takes
one Int value and returns one Int value.

 Both viewpoints are valid! No difference in usage
(thanks to Haskell’s function application syntax).

 Another syntactic specialty: so-called “sections”.
For example, “ (+) 5” can be writtenas “(5 +)”.

fmidue.github.io/ProPa-Slides 11.06.2025 82

UNIVER SITAT

Lambda-abstractions W DY SEU R G
Open-Minded

 We can also syntactically create new functions “on the
fly”, instead of predefined or own, explicitly defined
and named, functions already in the program.

 Such anonymous functions use the so-called lambda-

abstraction syntax (which we have already seen in the
context of QuickCheck tests): \x -> x + x

 So, some options of functions we could pass to a
function £ :: (Int -> Int) -> Int are:
id, succ, (gregorianMonthLength 2019), (* 5),
(\x -=> x + x), (\n -> length [1..n])

fmidue.github.io/ProPa-Slides 11.06.2025 83

'DUISBURG

ESSEN

Lambda-abstractions

Dpen-Minded

 The lambda-abstraction syntax also allows us to get a
clearer view on Haskell’s function definition syntax
(and its choice to be different from standard
mathematical function definition syntax).

 Namely, the following four definitions are equivalent
(each of type add :: Int -> Int -> Int):
add x y = x + y
add x = \y > x + vy
add \’x > \y >x +vy
add \x y >x+vy

« With standard mathematical notation, add(x,y) = .. ,
such variations would not have been so fluent.

fmidue.github.io/ProPa-Slides 11.06.2025 84

UNIVERSITAT

‘ nEuslssEBNu RG

Usefulness of higher-order functions

Dpen-Minded

« But is any of that really useful to us?

 The examples so far look somewhat esoteric and
artificial, except maybe for the animationOf and
quickCheck “drivers”, which we do not know how to

write ourselves yet though, anyway (due in part to the
involvement of I0).

 Well, there are many immediately useful higher-order
functions on lists as well...

fmidue.github.io/ProPa-Slides 11.06.2025 85

UNIVERSITAT

DEUSISS NU RG

Open-Minded

Higher-order functions on lists

DUISBURG

Higher-order functions on lists N %S

* For example, the function
foldll :: (a -=> a -> a) -> [a] -> a

puts a (left-associative) function/operator between all
elements of a non-empty list.

 So to compute the sum of such a list:
foldll (+) [1,2,3,4]
which will expand to:

1 +2 + 3 + 4

fmidue.github.io/ProPa-Slides 11.06.2025 87

UNIVERSITAT
DUISBURG

Higher-order functions on lists N %S
Open-Minded

 Another useful function:
map :: (a -> b) -> [a] -> [Db]

which applies a function to all elements of a list.

 For example:
map even [1..10]

map (dilated 5) [picl, pic2, pic3]

fmidue.github.io/ProPa-Slides 11.06.2025

88

UNIVERSITAT

‘ nEuslssEBNu RG

Higher-order functions on lists

Dpen-Minded

e And another one:
filter :: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain
predicate.

 For example,
filter i1sPalindrome completeDictionary

filter (> 0.5) bonusPercentagelist

fmidue.github.io/ProPa-Slides 11.06.2025 89

UNIVERSITAT
DUISBURG

Relationship to list comprehensions W Py
Open-Minded

* While the following are not the actual definitions of map
and £filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]
map £ list = [£ a | a <- list]

filter :: (a -> Bool) -> [a] -> [a]
filter p list = [a | a <- 1list, p a]

 Conversely, every list comprehension expression, no
matter how complicated with several generators,
guards, etc., can be implemented via map, filter, and
concat.

fmidue.github.io/ProPa-Slides 11.06.2025 90

‘ nEuslssEBNu RG

Relationship to list comprehensions

* Is programming with map and filter (and foldll and
the like) somehow “better” or “more idiomatic” than
using list comprehensions?

* In a sense, yes, since higher-order functions provide a
further step in the direction of more abstraction.

 For example, if we want to square some numbers from
a given list, subject to the condition that we are
specifically interested in numbers divisible by four, but
still have to work out whether we want to check this
divisibility before or after squaring, then ...

fmidue.github.io/ProPa-Slides 11.06.2025 91

u
DUISBURG

Relationship to list comprehensions ES'SEN
Open-Minded

... wWith list comprehensions we would consider, and
maybe experiment with,

[xX*2 | x <- list, x mod 4 == 0]
VS.
[v | x <- 1list, let y = x*2, v mod 4 == 0]

While with map and £ilter we would simply decide
between
map (*2) . filter (\x -> x "mod” 4 == 0)
and
filter (\x -> x mod™ 4 == 0) . map (*2)

fmidue.github.io/ProPa-Slides 11.06.2025 92

UNIVERSITAT
DUISBURG

Expressing laws | ERWL
Open-Minded

« Also, a law like (mentioned earlier):

reverse [£f a | a <- list]
= [£ a | a <- reverse list]

can nicely be expressed as:

reverse . map £ = map £ . reverse

e Then we can also ask under which conditions this holds:

filter p . map £f = map £ . filter g

« Generally, higher-order functions are a boon for “lawful
program construction”.

fmidue.github.io/ProPa-Slides 11.06.2025 93

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Algebraic data types

‘ nEuslssEBNu RG

Types in Haskell

 We have so far seen various types on which functions
can operate, such as number types (Integer, Float,

..), other base types like Bool and Char, as well as list

and tuple constructions to make compound types,
arbitrarily nested ([..1, (...,..)).

 We have also seen that libraries can apparently define
their own, domain specific types, such as Picture.

 To do the same ourselves: algebraic data types.

 These are a more general and more stringent version of
what is usually known as enumeration or union types.

They are also the inspiration for features like Swift’s
(recursive) enum types.

fmidue.github.io/ProPa-Slides 11.06.2025 95

UNIVERSITAT
‘ DUISBURG

ESSEN

Simple enumeration types

 Let us start simple. Assume we want to be able to talk
about days of the week, and compute things like “this
is a workday, yes/no”.

 We could fix some encoding of Monday, Tuesday etc.
as numbers (e.g., Monday = 1, Tuesday = 2, ...) and
define functions like:

workday :: Integer -> Bool
workday d = d < 6

 In a sense, we were lucky here that the intended
property corresponds to number ranges 1-5 and 6-7.

fmidue.github.io/ProPa-Slides 11.06.2025 96

UNIVERSITAT
DUISBURG

Simple enumeration types B D!y
Open-Minded

* So let us try to instead express on which days of the week
an exercise session in the ProPa course was scheduled.

 The answer this time is not a simple arithmetic comparison
like d < 6, but we can for example implement:

exerciseDay :: Integer -> Bool
exerciseDay 3 = False
exerciseDay 6 = False
exerciseDay 7 = False
exerciseDay = True

* In either case, what if we call workday or exerciseDay with
an input like 127?

fmidue.github.io/ProPa-Slides 11.06.2025 97

UNIVERSITAT
DUISBURG

Simple enumeration types N Oe!SeRy

Open-Minded

- Alternative approach, explicit new values:

data Day
= Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday

* Now:
exerciseDay :: Day -> Bool
exerciseDay Wednesday = False
exerciseDay Saturday = False
exerciseDay Sunday = False
exerciseDay = True

... and it is impossible to pass illegal inputs (like 12t" day).
« Terminology: type constructors and data constructors.

fmidue.github.io/ProPa-Slides 11.06.2025

98

UNIVERSITAT
DUISBURG

Simple enumeration types B D!y
Open-Minded

In addition to excluding absurd inputs, we get more useful
exhaustiveness (and also redundancy) checking.

For example, remember the game level example:

level :: (Integer, Integer) -> Integer
aTile :: Integer -> Picture

aTile 1 = block

aTile 2 = water

aTile 3 = pearl

aTile 4 = air

aTile = blank

Imagine that we introduce a new kind of tile, produce its new

“number code” inside the 1evel-function, but forget to also
handle it in the aTile-function. No compiler warning!

fmidue.github.io/ProPa-Slides 11.06.2025

99

UNIVERSITAT
DUISBURG

Simple enumeration types N Oe!SeRy

Open-Minded

If we had instead introduced a new type:
data Tile = Blank | Block | Pearl | Water | Air

and used level :: (Integer, Integer) -> Tile

and: aTile :: Tile -> Picture
aTile Blank = blank
aTile Block = block
aTile Pearl = pearl
aTile Water water
aTile Air = air

then adding another value to data Tile could not go
unnoticed in aTile.

The compiler would actually warn us if we forgot to handle the
new value there!

fmidue.github.io/ProPa-Slides 11.06.2025 100

UNIVERSITAT
DUISBURG

General algebraic data types O PSRy
Open-Minded

 Going beyond simple enumeration types, algebraic data
types can encapsulate additional values in the alternatives.

« That is, the data constructors can take arguments.
 For example:
data Date = Day Integer Integer Integer
data Time = Hour Integer

data Connection = Train Date Time Time
| Flight String Date Time Time

A possible value of type Connection:

Train (Day 20 04 2011) (Hour 11) (Hour 14)

fmidue.github.io/ProPa-Slides 11.06.2025 101

UNIVERSITAT
DUISBURG

General algebraic data types B PSRy

Open-Minded

« Computation on such types is via pattern-matching:

travelTime :: Connection -> Integer

travelTime (Train _ (Hour d) (Hour a))
=a-d+1

travelTime (Flight @ (Hour d) (Hour a))
=a-d+ 2

At the same time, the data constructors are also normal
functions, for example:

Day :: Integer -> Integer -> Integer -> Date

Train :: Date -> Time -> Time -> Connection

fmidue.github.io/ProPa-Slides 11.06.2025

102

UNIVERSITAT
DUISBURG

Recursive types W DSy

Dpen-Minded

* Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

« Values of this type:

Zero, Succ Zero, Succ (Succ Zero), ...

« Computation by recursive function definitions:

add :: Nat -> Nat -> Nat
add Zero m=m
add (Succ n) m = Succ (add n m)

fmidue.github.io/ProPa-Slides 11.06.2025

103

UNIVERSITAT
DUISBURG

Recursive types E5'SEPN
Dpen-Minded

 With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree
« Values: Leaf, Node Leaf 2 Leaf,...

« Computation:

height :: Tree -> Integer
height Leaf
=0

height (Node left right)
= 1 + max (height left) (height right)

fmidue.github.io/ProPa-Slides 11.06.2025 104

Polymorphism in algebraic data types

Open-Minded

Just like functions, algebraic data types can be
polymorphic:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

height :: Tree a -> Integer
height Leaf
=0

height (Node left right)
= 1 + max (height left) (height right)

fmidue.github.io/ProPa-Slides 11.06.2025 105

UNIVERSITAT
DUISBURG

Polymorphism in algebraic data types W
Dpen-Minded

 Another example, from the standard library:

data Maybe a Nothing | Just a

* Popular for functions that would otherwise be partial.
 Such as also in a re-design of the game level example:

data Tile = Block | Pearl | Water | Air

level :: (Integer, Integer) -> Maybe Tile
aTile :: Tile -> Picture

aTile Block = block

aTile Pearl = pearl

aTile Water = water

aTile Air = air

fmidue.github.io/ProPa-Slides 11.06.2025 106

UNIVERSITAT
DUISBURG

Persistency of data structures E's'SeB

Dpen-Minded

* Note that, just as any other data in Haskell, values of
algebraic data types are immutable.

 For example, we do not change any tree in a function like
this (insertion in binary search trees):

insert :: Integer -> Tree Integer
-> Tree Integer
insert n Leaf = Node Leaf n Leaf
insert n tree@ (Node left m right)
| n < m = Node (insert n left) m right
| n > m = Node left m (insert n right)
| otherwise = tree

* Discuss what this means ...

fmidue.github.io/ProPa-Slides 11.06.2025 107

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Lists as algebraic data type

UNIVERSITAT

‘ nEuslssEBNu RG

Another example data structure

Dpen-Minded

 If Haskell did not yet have a list type, we could
implement one ourselves:

data List a Nil | Cons a (List a)

- Example value: Cons 1 (Cons 2 Nil) :: List Int

« Computation:

length :: List a -> Int
length Nil =0
length (Cons rest) = 1 + length rest

fmidue.github.io/ProPa-Slides 11.06.2025 109

DUISBURG

Lists as just another algebraic data type W 'S
Open-Minded

* In fact, modulo special syntax, that is exactly what
Haskell lists are:

data [a] = [] | (:) a [a]

* So, for example, [1,2] issimply 1: (2:[]), which
thanks to right-associativity of “:” can also be written
as 1l:2:[].

 Functions on lists can then, of course, also be defined
using pattern-matching.

fmidue.github.io/ProPa-Slides 11.06.2025 110

Pattern-matching on lists W OB R S

Open-Minded

Some example functions:

length :: [a] -> Int

length [] =0

length (:rest) = 1 + length rest
append :: [a] -> [a] -> [a]

append [] ysS = ys

append (x:xs) ys = x append xs ys
head :: [a] -> a

head (x:) = x

zip :: [a] -> [b] -> [(a,b)]

(x,y) : zip xs ys
[]

zip (x:xs) (y:ys)
zZip

fmidue.github.io/ProPa-Slides 11.06.2025 111

DUISBURG

Pattern-matching on lists B D!y
Open-Minded

 Note how clever arrangement of cases/equations can
make function definitions more succinct.

 For example, we might on first attempt have defined
zip as follows:

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip (_:_) [] []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

 But the version from the previous slide is equivalent.

 Both versions also work with infinite lists, btw.

fmidue.github.io/ProPa-Slides 11.06.2025 112

Higher-order examples

Dpen-Minded

Also, as another example of a function we have used:

-> [a] -> [Db]
[]

f x : map £ xs

map :: (a ->
map _ []
map £ (x:xs)

I llg

And indeed related:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap @ Leaf = Leaf
treeMap f (Node left x right)
= Node (treeMap f left)
(£ x)
(treeMap f right)

fmidue.github.io/ProPa-Slides 11.06.2025

113

UNIVER SITAT

Higher-order examples W DY SEY R G

Dpen-Minded

 Also remember the function
foldll :: (a -> a -> a) -> [a] -> a

which puts a (left-associative) function/operator
between all elements of a non-empty list.

* Itis a member of a whole family of related functions,
the most prominent of which is foldr, defined thus:

foldr :: (a -=> b -> b) ->b -> [a] -> b
foldr c [] c
foldr £ ¢ (x:xs) f x (foldr £ c xs)

fmidue.github.io/ProPa-Slides 11.06.2025 114

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Notes on pattern-matching

UNIVER SITAT

' DEUSISSEBNU RG

Evaluation by pattern-matching

Dpen-Minded

« Ultimately, pattern-matching is what drives (lazy)
evaluation in Haskell.

 For example, let us consider how the expression
head (tail (£ [3, 3 + 1]))

is evaluated, given the following function definitions
(and the known head and tail functions):

f :: [Int] -> [Int] g :: Int -> Int
£ [= [] g3=gi4
f (x:xs) =g x : £ xs gn=n+1

fmidue.github.io/ProPa-Slides 11.06.2025 116

UNIVERSITAT

' DEUSISSEBNU RG

Explicit case-expressions

Dpen-Minded

« Pattern-matching is not restricted to the left-hand sides of
function definitions, it can also occur inside expressions,
using the case-keyword.

 For example, instead of something like this:

if maybeThing == Nothing
then .. something ...
else ..something else, using fromJust maybeThing ..

we can (and would usually prefer to) write this:

case maybeThing of
Nothing -> ... something ...
Just thing -> .. something else, directly using thing ...

fmidue.github.io/ProPa-Slides 11.06.2025 117

Binding of variables

UNIVERSITAT

‘ nEuslssEBNu RG

Dpen-Minded

Pattern-matching always binds variable names that occur in
patterns, possibly shadowing existing things of same name.

That sometimes leads to confusion for beginners, such as
why it does not work to write a function like the following
one (given the existence of red :: Color etc., imported
from CodeWorld):

primaryColor :: Color -> Bool
primaryColor red = True
primaryColor green = True
primaryColor blue True
primaryColor False

fmidue.github.io/ProPa-Slides 11.06.2025 118

UNIVERSITAT

DEUS | SSENU RG

Open-Minded

Input / Output

“In short, Haskell is the world’s finest imperative
programming language.”
Simon Peyton Jones

UNIVERSITAT
DUISBURG

Input / Output in Haskell, general approach W %Sy

Open-Minded

 Even in declarative languages, there should be some
(disciplined) way to embed “imperative” commands like
“print something to the screen”.

* In pure functions, no such interaction with the operating
system / user/ ... is possible.

« And clearly it should not be, since it would defy referential
transparency.

 But there is a special do-notation in Haskell that enables
interaction, and from which one can call “normal” functions.

« All the features and abstraction concepts (higher-order,
polymorphism, ...) of Haskell remain available even in and
with do-code.

fmidue.github.io/ProPa-Slides 11.06.2025 120

UNIVERSITAT

Input / Output in Haskell, very simple example eI R e
Open-Minded

* Getting two numbers from the user and then printing
some value computed from them to the screen:

main :: IO ()
main = do n <- readLn
m <- readlLn
print (prod [n..m])

prod :: [Integer] -> Integer
prod [] = 1
prod (x:xs) = x * prod xs

* Note the (apparent) type inference on n and m.

fmidue.github.io/ProPa-Slides 11.06.2025 121

' DEUSISSEBNU RG

Input / Output in Haskell, the principles

 There is a predefined type constructor 10, such that for
every type like Int, Tree Bool, [(Int,Bool)] etc.,
the type I0 Int, IO (Tree Bool), ... can be built.

* The interpretation of a type I0 a is that elements of
that type are not themselves concrete values, but
instead are (potentially arbitrarily complex) sequences
of input and output operations, and computations

depending on values read in, by which ultimately a
value of type a is created.

 An (independently executable) Haskell program overall
always has an “I10 type”, usually main :: IO ().

fmidue.github.io/ProPa-Slides 11.06.2025 122

Input / Output in Haskell, the principles

Open-Minded

« To actually create “I10 values”, there are certain
predefined primitives (and one can recognize their I0-

related character based on their types).

 For example, there are getChar :: IO Char and
putChar :: Char -> IO ().

« Also, for multiple characters, getLine :: IO String
and putStr, putStrLn :: String -> IO ().

* More abstractly, for any type for which Haskell knows

(or was instructed) how to convert from or to strings,
readLn :: Read a => IO a forinputas well as

print :: Show a => a -> IO () for output.

fmidue.github.io/ProPa-Slides 11.06.2025 123

UNIVERSITAT

‘ nEuslssEBNu RG

Input / Output in Haskell, the principles

Dpen-Minded

To combine I0-computations (i.e., to build more complex
action sequences based on the I0 primitives), we can use the
do-notation.

Its general form is: do cmd,
x, <- cmd,
X, <- cmd,
cmd,
X; <- cmd,

where each cmd; has an I0 type and to each x, (if present) a
value of the type encapsulated in the cmd; will be bound (for
use in the rest of the do-block), namely exactly the result of

executing cmd,.

fmidue.github.io/ProPa-Slides 11.06.2025 124

UNIVERSITAT
‘ DUISBURG

ESSEN

Input / Output in Haskell, the principles

« The do-block as a whole has the type of the last cmd,.
* For that last command, generally no x_ is present.

« Often also useful (for example, at the end of a do-

block): a predefined function return :: a -> I0 a
that simply yields its argument, without any actual 10
action.

 What is never ever, at all, possible or allowed is to

directly extract (beyond the explicit sequentialisation
and binding structure within do-blocks) the

encapsulated value from an I0 computation, i.e., to
simply turn an I0 a value into an a value.

fmidue.github.io/ProPa-Slides 11.06.2025 125

UNIVERSITAT

User defined “control structures” W 0U! SR R G

ESSEN

Dpen-Minded

As mentioned, also in the context of I0-computations, all
abstraction concepts of Haskell are available, particularly
polymorphism and definition of higher-order functions.

« This can be employed for defining things like:

while :: a -> (a -> Bool) -> (a -> IO a)
-> I0 a
while a p body = loop a
where loop x = if p x then do x' <- body x
loop x'
else return x

e Which can then be used thus:

while 0
(< 10)
(\n -> do {print n; return (n+l)})

fmidue.github.io/ProPa-Slides 11.06.2025

126

	Foliennummer 1
	The diversity of programming languages
	A rough plan of the course
	On comments about past exercises
	Foliennummer 5
	Expression-based programming
	Properties of (pure) expressions
	Properties of (pure) expressions
	Properties of (pure) expressions
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	The situation in imperative programming languages
	So what?
	Foliennummer 16
	Describing a picture via an expression
	Brief recap from last week
	Describing a picture via an expression
	Describing an animation via a function
	Another example
	Foliennummer 22
	A desire for additional expressivity
	One kind of richer expressions: list comprehensions
	More mundane examples of list comprehensions
	More mundane examples of list comprehensions
	So where are we, expressivity-wise?
	Case distinctions
	Comparison to the situation in imperative setting
	Some usage hints on case distinctions in Haskell
	Foliennummer 31
	“Oddities” of syntax at the type level
	“Oddities” of syntax at the expression/function level
	Layout-sensitivity
	Other syntax remarks
	A specific observation based on exercise submissions
	Specifics about number types
	… and arithmetic operators
	… and arithmetic operators
	Some observations based on past years’ exercises
	Types beside number types
	Foliennummer 42
	Expressing conditional behaviour
	Expressing conditional behaviour
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definition using guards
	Function definitions generally
	Function definitions generally
	Foliennummer 57
	Some observations based on exercise submissions
	Foliennummer 59
	A few words about lists up front
	Examples of existing (first-order) functions on lists
	Different ways of working with lists
	Infinite lists
	Infinite lists
	An interesting function on finite lists
	Foliennummer 66
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions on lists
	Polymorphic functions in other languages
	Inference of polymorphic types
	Consequences of polymorphic types
	Foliennummer 77
	Higher-order functions
	The types of higher-order functions
	The types of higher-order functions
	Functions to pass to higher-order functions
	Some syntactic specialties
	Lambda-abstractions
	Lambda-abstractions
	Usefulness of higher-order functions
	Foliennummer 86
	Higher-order functions on lists
	Higher-order functions on lists
	Higher-order functions on lists
	Relationship to list comprehensions
	Relationship to list comprehensions
	Relationship to list comprehensions
	Expressing laws
	Foliennummer 94
	Types in Haskell
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	Simple enumeration types
	General algebraic data types
	General algebraic data types
	Recursive types
	Recursive types
	Polymorphism in algebraic data types
	Polymorphism in algebraic data types
	Persistency of data structures
	Foliennummer 108
	Another example data structure
	Lists as just another algebraic data type
	Pattern-matching on lists
	Pattern-matching on lists
	Higher-order examples
	Higher-order examples
	Foliennummer 115
	Evaluation by pattern-matching
	Explicit case-expressions
	Binding of variables
	Foliennummer 119
	Input / Output in Haskell, general approach
	Input / Output in Haskell, very simple example
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	Input / Output in Haskell, the principles
	User defined “control structures”

