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Programming Paradigms

‘ Prolog Basics I
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Prolog in simplest case: facts and queries

* A kind of data base with a number of facts:

woman (mia) .

woman (jody) .

woman (yolanda) .
playsAirGuitar (jody) .

* Queries:

?- woman (mia) . ¢
true.

The dot 1s essential!

?- playsAirGuitar (jody) .
true.

?- playsAirGuitar (mia) .
false.

?- playsAirGuitar (vincent).
false.

?- playsPiano(jody) .
false. «

or an €rror message
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Facts + simple implications

C‘if’
|
happy (yolanda) .
listens2Music (mia) .
Head = listens2Music (yolanda) :- happy(yolanda) < ﬁBody
playsAirGuitar (mia) :- listens2Music(mia).
playsAirGuitar (yolanda) :- listens2Music(yolanda).
* Queries:

?- playsAirGuitar (mia) .
true.

?- playsAirGuitar (yolanda).
true.

because of:

happy (yolanda)

= listens2Music (yolanda)

= playsAirGuitar (yolanda)
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More complex rules

Alternatives —

“and”
happy (vincent) .
listens2Music (butch) .
playsAirGuitar (vincent) :- listens2Music(vincent),
happy (vincent) .
playsAirGuitar (butch) :- happy (butch).
playsAirGuitar (butch) :- listens2Music (butch).

* Queries:
?- playsAirGuitar (vincent).
false.
?- playsAirGuitar (butch).
true.
» Alternative notation: “or”
/
playsAirGuitar (butch) :- happy (butch) ;
listens2Music (butch) .
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Relations, and more complex queries

woman (mia) .
woman (jody) .
woman (yolanda) .

multi-ary (concretely, binary)
predicate

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .
loves (vincent,vincent).

* Queries:
?- woman (X) .
X = mia ;< semicolon entered by user
X = jody ;

X = yolanda.

?- loves (vincent,X) .
X = mia ;
X = wvincent.

?- loves (vincent,X), woman (X) .
X = mia ;
false.
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Variables in rules (not just in queries)

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z).

* Queries:

?- jealous (marsellus, X).
X = vincent ;

X = marsellus ;

false.

?- Jealous (X, ).
X = vincent ;
vincent ;
marsellus ;
marsellus ;
= mia.

anonymous variable

KX KX
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Variables in rules (not just in queries)

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .

:- loves(X,2), loves(Y,Z), X \= Y.

important that at end I

jealous (X,Y)

* Queries:

?- jealous (marsellus, X).
X = vincent ;
false.

?- Jealous (X, ).
X = vincent ;

X = marsellus ;
false.

?- jealous (X,Y).
X = vincent,

Y = marsellus ;
X = marsellus,
Y = vincent ;
false.
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Some observations on variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

Variables in rules and in queries are independent from each other.

?- jealous (marsellus,X) .
X = wvincent ;

false.

Within a rule or a query, the same variables represent the same objects.

But different variables do not necessarily represent different objects.

It 1s possible to have several occurrences of the same variable in a rule’s head!

In a rule’s body there can be variables that do not occur 1in its head!
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Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

» Possibly, for arbitrary (but fixed) X , ¥:
if for every choice of Z holds: loves (X, 2), and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

2?7
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Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)
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Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z), and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

* Logically equivalent, for arbitrary (but fixed) X, ¥:
if for any choice of Z holds: loves (X,2),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)
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Programming Paradigms

‘ Syntactical ingredients of Prolog I
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Syntax / notions in Prolog

predicate constant

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul)
istVaterVon (fritz, ha

istGrossvaterVon (G,E) :-
istVatervon (G,V),
istGrossvaterVon (G,E) :-

~""

literal

v

istVatervVon (V,E) .

variable

implication

istVatervVon (G,M), istMutterVon(M,E).

facts

rules

conjunction

?- istGrossvaterVon (kurt,paul) .
?- istGrossvaterVon (kurt,fritz).
?- istGrossvaterVon (kurt,E).

?- istGrossvaterVon (G,paul) .

clauses

queries
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Syntactical objects in Prolog

» To build clauses, Prolog uses different pieces:

constants ( numbers, atoms — mainly lowercase identifiers, ...)

variables ( X,Y, ThisThing, , GI107...)

operator terms (... 1+3 %4 ..))

structures ( date(27,11,2007), person(fritz, mueller), ...

composite, recursive, “infinite”, ...)

« Note: Prolog has no type system!
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Syntactical objects in Prolog

Structures in Prolog

» Structures represent objects that are made up of other objects (like trees and subtrees).

« Example:
functor | «——— must be an atom

d

Ir'd N
person (fritz, mueller, date(27,11,2007))

I

substructure

functors: person/3, date/3 (notation for arity)

» Through this, modelling of essentially “algebraic data types” — but not actually typed.
So, person (1,2, "'a") would also be a legal structure.

» Arbitrary nesting depth allowed — in principle infinite.
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Syntactical objects in Prolog

Predefined syntax for special structures:

» There is a predefined “list type™ as recursive data structure:

[1,2,a] .(1,.(2,.(a,[1))) [1I[2,a]] [1,2]1[a]l]l [1,2].(a,[])]

 Character strings can be represented as lists of ASCII-Codes:

"prolog" = [80, 114, 111,108, 111, 103]
— (80, . (114, . (111, . (108, . (111, . (103, ]))))

Operators:

» Operators are functors/atoms made from symbols and can be written infix.

» Example: in arithmetic expressions

» Mathematical functions are defined as operators.

e |1 + 3 * 4| istoberead as this structure: | +(1,*(3,4))
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Syntactical objects in Prolog

Collective notion “terms’:

* Terms are constants, variables or structures:

fritz

27

MM

[europe, asia, africa | Rest]

person (fritz, Lastname, date (27, MM, 2007))

* A oround term 1s a term that does not contain variables:

person (fritz, mueller, date(27, 11, 2007))
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Programming Paradigms

‘ Operational intuition for Prolog I
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Operationalisation?

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).

. . istVaterVon (fritz,hans).
Specification (program) =

relation definitions istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvaterVon (kurt, X) Input: a query
(repeated) resolution

: |

Output: variable substitution(s)
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Operationalisation in Prolog (1)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/
parameter
passing
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
S — oy
istGrossvaterVon (G,E) :- istVaterV*n(G,M),istMutterVon(M,E).

Ist reduction v

istVaterVon (kurt,V) I
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Operationalisation in Prolog (2)

Principle: reduction to subproblems, where new subqueries are found from left to right!

istGrossvaterVon (kurt, X) I

matching/
parameter
passing
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S —— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonkM,E).

A\ 4

istVaterVon (kurt, fritz) I 2nd reduction
v
istVaterVon (fritz, E) I
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Operationalisation in Prolog (3)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/ % return of
parameter result
passing parameter
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S—— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonijﬁ).

A\ 4

istVaterVon (kurt, fritz) I E = paul
v
istVaterVon (fritz,paul) I
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Operationalisation in Prolog (4)

 Prolog always looks for matching rules or facts from top to bottom in the
program.

subquery: istVaterVon (fritz, E)
|

istVaterVon (kurt, fritz). .
solution:
istVaterVon (fritz,paul).

E = 1l
istVaterVon (fritz,6 hans). pau

* Since a relation generally is not a unique mapping, further answers for a (sub)query
may exist. Prolog finds those using backtracking:

re-try: istVaterVon (fritz, E)
' solution:
. istVaterVon (kurt, fritz).
position of last E = paul;
solution — that is where =———b»-istVaterVon (fritz,paul) . E = hans
search continues ‘»istVaterVon (fritz,hans) .
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Operationalisation in Prolog (5)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/ A return of
parameter § result
passing : parameter
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v EA ................................................ .
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S—— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonkMéE).

A\ 4

istVaterVon (kurt, fritz) I i E = hans
vV =
istVaterVon (fritz, hans) I
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Operationalisation in Prolog (6)

The backtracking also concerns further matching rules:

istGrossvaterVon (kurt, X) I

matching/ | s
parameter |
passing | =
- istVaterVon (kurt, fritz) .
istVaterVon (fritz,paul).
istVaterVon (fritz,6 hans).
v:
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
v
istGrossvaterVon (G,E) :- istVaterVon(G,M) ,h istMutterVon (M,E).
.................................... ¥ L ———— L A
3rd reduction v

istVaterVon (kurt,6 M) I Failure!
v
istMutterVon (fritz, E) I
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Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).

X =paul: D

Compare (within a Prolog system): use of ?- trace. I
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Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).

X =paul:
X = hans: ?-.

Compare (within a Prolog system): use of ?- trace. I
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Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

X =paul:
X = hans:

?- istVaterVon(kurt, M), istMutterVon(M, X).
?- istMutter Von(fritz, X).
Failure!

Compare (within a Prolog system): use of ?- trace. I
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Programming Paradigms

‘ More Prolog examples I
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Simple example for working with data structures

add (0,X,X) .
add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).

?- add(s(0),s(0),s(s(0))).
true.

?- add(s(0) ,s(0) ,N).
N = s(s(0)) ;
false.

* Recall, in Haskell:

data Nat = Zero | Succ Nat

add :: Nat - Nat — Nat
add Zero X =X
add (Succ x) y = Succ (add x y)
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Systematic connection/derivation?

» Essential difference Haskell/Prolog:
Functions Vs. Predicates/Relations
fxy=z “corresponds to” p(X,Y,2).

 First a somewhat naive attempt to exploit this correspondence:

| add Zero X =X I

add(Zerg, X, X)

add(0,X,X) . I
| add (Succ x) y = Succ (add x y) I

v
add(Succ x, y, Succ (add x y))
v

77?
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Systematic connection/derivation?

» Essential difference Haskell/Prolog:
Functions Vs. Predicates/Relations
fxy=z “corresponds to” p(X,Y,2).

» Systematically avoiding nested function calls:

| add (Succ x) y = Succ (add x y) I

v
| add (Succ x) y=Succz wherez=addxy I
v

add(Succ x, y, Succ z) if add(x,y, z)

add(s(X) ,Y¥,s(2)) :- add(X,Y,Z). I
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On the flexibility of Prolog predicates

add(0,X,X) .

add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).

?- add(N,M,s(s(0))).
0,

s(s(0)) -

s (0),

s(0) ;

s(s(0)),

0o ;

?- add(N,s(0),s(s(0))).
N = s(0) ;
false.

?- add(N,M,0).

2?7
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On the flexibility of Prolog predicates

add(0,X,X) .
add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).
sub(X,Y,Z) :- add(Z,Y,X).

?- sub(s(s(0)),s(0),N).
N = s(0) ;
false.

?- sub(N,M,s(0)).
N =s(M) ;
false.
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Another example

Computing the length of a list in Haskell:

length [] 0
length (x:xs) = 1length xs + 1

Computing the length of a list in Prolog:

length([],0).

length ([X|Xs] ,N) :- length(Xs,M), N is M+1.

?- length([1,2,a], Res).

list with 3 arbitrary
(variable) elements

Res = 3.
?- length(List,3). x////////

List = [ G331, G334, _G337]
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Arithmetics vs. symbolic operator terms

Caution: If instead of:

length([],0).
length ([X|Xs] ,N) :- length(Xs,M), N is M+1.

WC uScC:

length([],0).
length([X|Xs] ,M+1l) :- length(Xs,M).

then:
?- length([1,2,a], Res).
Res = 0+1+1+1.

?- length(List,3).
false.

?- length (List,0+1+1+1).
List = [ G331, G334, _G337].
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An example corresponding to several nested calls

partition :: Int — [Int] — ([Int], [Int])

quicksort[ ] =[]
quicksort (h : t) = quicksort 1, ++ h : quicksort 1,
where (l,, 1,) = partition h t

i

quicksort [ ] =[]

quicksort (h : t) = Is ++ h : quicksort 1,
where (1,, 1,) = partition h t

Is = quicksort 1,

i

quicksort [ ] =[]
quicksort (h:t)= Is++h:lg
where (1,, 1,) = partitionht § _
Is = quicksort 1,
lg = quicksort 1,

lesson: “inner subexpressions first”

quicksort([], []).

quicksort ([H|T], List) :-
partition(H, T, L1, L2),
quicksort (L1, LS),
quicksort (L2, LG),
append (LS, [H|LG], List).

i

quicksort [ ] =[]
quicksort (h : t) = list
where (l,, 1,) = partition h t

Is = quicksort 1,

lg = quicksort 1,
list=1s++h:lg
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