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Prolog Basics
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Prolog in simplest case: facts and queries

• A kind of data base with a number of facts:

• Queries:

woman(mia).
woman(jody).
woman(yolanda).
playsAirGuitar(jody).

?- woman(mia).
true.

?- playsAirGuitar(jody).
true.

?- playsAirGuitar(mia).
false.

?- playsAirGuitar(vincent).
false.

?- playsPiano(jody).
false.

The dot is essential!

or an error message
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Facts + simple implications

• Queries:

happy(yolanda).
listens2Music(mia).
listens2Music(yolanda) :- happy(yolanda).
playsAirGuitar(mia) :- listens2Music(mia).
playsAirGuitar(yolanda) :- listens2Music(yolanda).

?- playsAirGuitar(mia).
true.

?- playsAirGuitar(yolanda).
true.

“if”

Head Body

happy(yolanda)

⇒ listens2Music(yolanda)

⇒ playsAirGuitar(yolanda)

because of:



fmidue.github.io/ProPa-Slides Programming Paradigms 5

More complex rules

• Queries:

• Alternative notation:

happy(vincent).
listens2Music(butch).
playsAirGuitar(vincent) :- listens2Music(vincent), 

happy(vincent).
playsAirGuitar(butch) :- happy(butch).
playsAirGuitar(butch) :- listens2Music(butch).

?- playsAirGuitar(vincent).
false.

?- playsAirGuitar(butch).
true.

“and”

Alternatives

...
playsAirGuitar(butch) :- happy(butch); 

listens2Music(butch).

“or”
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Relations, and more complex queries

• Queries:

woman(mia).
woman(jody).
woman(yolanda).

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).
loves(vincent,vincent).

?- woman(X).
X = mia ;
X = jody ;
X = yolanda.

?- loves(vincent,X).
X = mia ;
X = vincent.

?- loves(vincent,X), woman(X).
X = mia ;
false.

multi-ary (concretely, binary) 
predicate

semicolon entered by user
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Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z).

?- jealous(marsellus,X).
X = vincent ;
X = marsellus ;
false.

?- jealous(X,_).
X = vincent ;
X = vincent ;
X = marsellus ;
X = marsellus ;
X = mia.

anonymous variable
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Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).
X = vincent ;
false.

?- jealous(X,_).
X = vincent ;
X = marsellus ;
false.

?- jealous(X,Y).
X = vincent,
Y = marsellus ;
X = marsellus,
Y = vincent ;
false.

important that at end
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Some observations on variables

• Variables in rules and in queries are independent from each other.

• Within a rule or a query, the same variables represent the same objects.

• But different variables do not necessarily represent different objects.

• It is possible to have several occurrences of the same variable in a rule’s head!

• In a rule’s body there can be variables that do not occur in its head!

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).
X = vincent ;
false.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:
if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

???

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:
if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

• Logically equivalent, for arbitrary (but fixed) X , Y:
if for any choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y, 
then also holds: jealous(X,Y)

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
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Syntactical ingredients of Prolog
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Syntax / notions in Prolog

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V), istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M), istMutterVon(M,E).

?- istGrossvaterVon(kurt,paul).
?- istGrossvaterVon(kurt,fritz).
?- istGrossvaterVon(kurt,E).
?- istGrossvaterVon(G,paul).

rules

literal

queries

facts

clauses

conjunction

implication

predicate constant

variable
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Syntactical objects in Prolog

• To build clauses, Prolog uses different pieces:

- constants ( numbers, atoms – mainly lowercase identifiers, …)

- variables ( X,Y, ThisThing, _, _G107…) 

- operator terms ( … 1 + 3 * 4 …)

- structures ( date(27,11,2007), person(fritz, mueller), …

composite, recursive, “infinite”, …)

• Note: Prolog has no type system!
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Syntactical objects in Prolog

Structures in Prolog

• Structures represent objects that are made up of other objects (like trees and subtrees).

• Example:

• Through this, modelling of essentially “algebraic data types” – but not actually typed. 
So, person(1,2,'a') would also be a legal structure.

• Arbitrary nesting depth allowed – in principle infinite. 

person(fritz, mueller, date(27,11,2007))

functor

substructure

functors: person/3, date/3 (notation for arity)

must be an atom
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Syntactical objects in Prolog

• There is a predefined “list type” as recursive data structure:

[1,2,a]  .(1,.(2,.(a,[])))  [1|[2,a]]  [1,2|[a]]  [1,2|.(a,[])]

• Character strings can be represented as lists of ASCII-Codes:

"Prolog" =  [80, 114, 111, 108, 111, 103]
=  .(80,  . (114,  . (111,  . (108,  . (111,  . (103, [ ])))))

Predefined syntax for special structures:

Operators:

• Operators are functors/atoms made from symbols and can be written infix.

• Example: in arithmetic expressions

• Mathematical functions are defined as operators.

• is to be read as this structure:1 + 3 * 4 +(1,*(3,4))
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Syntactical objects in Prolog

Collective notion “terms”:

• Terms are constants, variables or structures:

fritz
27
MM
[europe, asia, africa | Rest]
person(fritz, Lastname, date(27, MM, 2007)) 

• A ground term is a term that does not contain variables:

person(fritz, mueller, date(27, 11, 2007)) 
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Operational intuition for Prolog
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Operationalisation?

Specification (program) ≡
relation definitions

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt,X) 

⇝ …

⇝ …

⇝ …

⇝ …

⇝ X = paul ;  X = hans

Input:  a query

Output:  variable substitution(s)

(repeated) resolution
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. .

Operationalisation in Prolog (1)

istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,V)

matching/
parameter
passing

1st reduction

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).
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. . .

Operationalisation in Prolog (2)

.istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

2nd reduction

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,E)

Principle:  reduction to subproblems, where new subqueries are found from left to right!
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. .

Operationalisation in Prolog (3)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,paul)

E = paul

return of
result
parameter

Principle:  reduction to subproblems
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Operationalisation in Prolog (4)

• Prolog always looks for matching rules or facts from top to bottom in the 
program.

• Since a relation generally is not a unique mapping, further answers for a (sub)query
may exist. Prolog finds those using backtracking:

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

subquery: istVaterVon(fritz,E)

istVaterVon(kurt,fritz). 

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

re-try: istVaterVon(fritz,E)

position of last
solution – that is where

search continues

solution:
E = paul

solution:
E = paul;
E = hans



fmidue.github.io/ProPa-Slides Programming Paradigms 25

. .

Operationalisation in Prolog (5)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,hans)

E = hans

return of
result
parameter

Principle:  reduction to subproblems
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. .

Operationalisation in Prolog (6)

The backtracking also concerns further matching rules:

. .
istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,M)

matching/
parameter
passing

3rd reduction

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istMutterVon(fritz,E)

Failure!
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .X = paul:

Compare (within a Prolog system): use of ?- trace.
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .
?- .

X = paul:
X = hans:

Compare (within a Prolog system): use of ?- trace.
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Operationalisation on the example, presented differently

istVaterVon(kurt,fritz). 
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .
?- .
?- istVaterVon(kurt, M), istMutterVon(M, X).
?- istMutterVon(fritz, X).

X = paul:
X = hans:

Failure!

Compare (within a Prolog system): use of ?- trace.
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More Prolog examples
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Simple example for working with data structures

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z). 

data Nat = Zero | Succ Nat 

add :: Nat → Nat → Nat
add Zero x = x
add (Succ x)  y = Succ (add x y)

?- add(s(0),s(0),s(s(0))).
true.

?- add(s(0),s(0),N).
N = s(s(0)) ;
false.

• Recall, in Haskell:
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Systematic connection/derivation?

add(0,X,X).

add Zero x = x

• Essential difference Haskell/Prolog:

Functions                    vs.                 Predicates/Relations

f x y = z           “corresponds to” p(X,Y,Z).

• First a somewhat naïve attempt to exploit this correspondence:

add (Succ x)  y = Succ (add x y)

add(Zero, x, x)

add(Succ x, y, Succ (add x y))

???
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add (Succ x)  y = Succ (add x y)
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Systematic connection/derivation?

add(s(X),Y,s(Z)) :- add(X,Y,Z). 

add(Succ x, y, Succ z)    if   add(x, y, z)

add (Succ x)  y = Succ z    where z = add x y

• Essential difference Haskell/Prolog:

Functions                    vs.                 Predicates/Relations

f x y = z           “corresponds to” p(X,Y,Z).

• Systematically avoiding nested function calls:
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On the flexibility of Prolog predicates

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z). 

?- add(N,M,s(s(0))).
N = 0,
M = s(s(0)) ;
N = s(0),
M = s(0) ;
N = s(s(0)),
M = 0 ;
false. 

?- add(N,s(0),s(s(0))).
N = s(0) ;
false.

?- add(N,M,O). ???
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On the flexibility of Prolog predicates

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X). 

?- sub(s(s(0)),s(0),N).
N = s(0) ;
false.

?- sub(N,M,s(0)).
N = s(M) ;
false.
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Another example

Computing the length of a list in Haskell:

length []      =  0
length (x:xs)  =  length xs + 1 

Computing the length of a list in Prolog:

length([],0).
length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).
Res = 3.

?- length(List,3).
List = [_G331, _G334, _G337]

list with 3 arbitrary 
(variable) elements
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Arithmetics vs. symbolic operator terms

Caution: If instead of:

we use:

then:

length([],0).
length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).
Res = 0+1+1+1.

?- length(List,3).
false.

?- length(List,0+1+1+1).
List = [_G331, _G334, _G337].

length([],0).
length([X|Xs],M+1) :- length(Xs,M).
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An example corresponding to several nested calls

partition :: Int → [Int] → ([Int], [Int])
…

quicksort [ ]      =  [ ]
quicksort (h : t) =  quicksort l1 ++ h : quicksort l2

where (l1, l2) = partition h t

quicksort [ ]      =  [ ]
quicksort (h : t) =  ls ++ h : quicksort l2

where (l1, l2) = partition h t
ls = quicksort l1

quicksort [ ]      =  [ ]
quicksort (h : t) =  ls ++ h : lg

where (l1, l2) = partition h t
ls = quicksort l1
lg = quicksort l2

quicksort [ ]      =  [ ]
quicksort (h : t) =  list

where (l1, l2) = partition h t
ls = quicksort l1
lg = quicksort l2
list = ls ++ h : lg

quicksort([], []). 
quicksort([H|T], List) :-

partition(H, T, L1, L2), 
quicksort(L1, LS), 
quicksort(L2, LG), 
append(LS, [H|LG], List).

lesson: “inner subexpressions first”
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