Programming Paradigms — Prolog part

Summer Term 2025

Prof. Janis Voigtliander
University of Duisburg-Essen

fmidue.github.io/ProPa-Slides Programming Paradigms

Programming Paradigms

‘ Prolog Basics I

fmidue.github.io/ProPa-Slides Programming Paradigms

Prolog in simplest case: facts and queries

* A kind of data base with a number of facts:

woman (mia) .

woman (jody) .

woman (yolanda) .
playsAirGuitar (jody) .

* Queries:

?- woman (mia) . ¢
true.

The dot 1s essential!

?- playsAirGuitar (jody) .
true.

?- playsAirGuitar (mia) .
false.

?- playsAirGuitar (vincent).
false.

?- playsPiano(jody) .
false. «

or an €rror message

fmidue.github.io/ProPa-Slides Programming Paradigms

Facts + simple implications

C‘if’
|
happy (yolanda) .
listens2Music (mia) .
Head = listens2Music (yolanda) :- happy(yolanda) < ﬁBody
playsAirGuitar (mia) :- listens2Music(mia).
playsAirGuitar (yolanda) :- listens2Music(yolanda).
* Queries:

?- playsAirGuitar (mia) .
true.

?- playsAirGuitar (yolanda).
true.

because of:

happy (yolanda)

= listens2Music (yolanda)

= playsAirGuitar (yolanda)

fmidue.github.io/ProPa-Slides Programming Paradigms

More complex rules

Alternatives —

“and”
happy (vincent) .
listens2Music (butch) .
playsAirGuitar (vincent) :- listens2Music(vincent),
happy (vincent) .
playsAirGuitar (butch) :- happy (butch).
playsAirGuitar (butch) :- listens2Music (butch).

* Queries:
?- playsAirGuitar (vincent).
false.
?- playsAirGuitar (butch).
true.
» Alternative notation: “or”
/
playsAirGuitar (butch) :- happy (butch) ;
listens2Music (butch) .

fmidue.github.io/ProPa-Slides Programming Paradigms

Relations, and more complex queries

woman (mia) .
woman (jody) .
woman (yolanda) .

multi-ary (concretely, binary)
predicate

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .
loves (vincent,vincent).

* Queries:
?- woman (X) .
X = mia ;< semicolon entered by user
X = jody ;

X = yolanda.

?- loves (vincent,X) .
X = mia ;
X = wvincent.

?- loves (vincent,X), woman (X) .
X = mia ;
false.

fmidue.github.io/ProPa-Slides Programming Paradigms 6

Variables in rules (not just in queries)

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z).

* Queries:

?- jealous (marsellus, X).
X = vincent ;

X = marsellus ;

false.

?- Jealous (X,).
X = vincent ;
vincent ;
marsellus ;
marsellus ;
= mia.

anonymous variable

KX KX

fmidue.github.io/ProPa-Slides Programming Paradigms

Variables in rules (not just in queries)

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .

:- loves(X,2), loves(Y,Z), X \= Y.

important that at end I

jealous (X,Y)

* Queries:

?- jealous (marsellus, X).
X = vincent ;
false.

?- Jealous (X,).
X = vincent ;

X = marsellus ;
false.

?- jealous (X,Y).
X = vincent,

Y = marsellus ;
X = marsellus,
Y = vincent ;
false.

fmidue.github.io/ProPa-Slides Programming Paradigms 8

Some observations on variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

Variables in rules and in queries are independent from each other.

?- jealous (marsellus,X) .
X = wvincent ;

false.

Within a rule or a query, the same variables represent the same objects.

But different variables do not necessarily represent different objects.

It 1s possible to have several occurrences of the same variable in a rule’s head!

In a rule’s body there can be variables that do not occur 1in its head!

fmidue.github.io/ProPa-Slides Programming Paradigms

Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

» Possibly, for arbitrary (but fixed) X , ¥:
if for every choice of Z holds: loves (X, 2), and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

2?7

fmidue.github.io/ProPa-Slides Programming Paradigms

10

Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent) .

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

fmidue.github.io/ProPa-Slides Programming Paradigms 11

Intuition on “free” variables

loves (vincent,mia) .
loves (marsellus,mia) .
loves (mia,vincent).

jealous (X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

* What is the “logical” interpretation of Z above? (or of the whole rule?)

* Or, for arbitrary (but fixed) X , ¥:
for every choice of Z holds: if loves (X,Z), and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

* Logically equivalent, for arbitrary (but fixed) X, ¥:
if for any choice of Z holds: loves (X,2),and loves (Y,Z),and X \= Y,
then also holds: jealous (X, Y)

fmidue.github.io/ProPa-Slides Programming Paradigms 12

Programming Paradigms

‘ Syntactical ingredients of Prolog I

fmidue.github.io/ProPa-Slides Programming Paradigms

Syntax / notions in Prolog

predicate constant

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul)
istVaterVon (fritz, ha

istGrossvaterVon (G,E) :-
istVatervon (G,V),
istGrossvaterVon (G,E) :-

~""

literal

v

istVatervVon (V,E) .

variable

implication

istVatervVon (G,M), istMutterVon(M,E).

facts

rules

conjunction

?- istGrossvaterVon (kurt,paul) .
?- istGrossvaterVon (kurt,fritz).
?- istGrossvaterVon (kurt,E).

?- istGrossvaterVon (G,paul) .

clauses

queries

fmidue.github.i0/ProPa-Slides

Programming Paradigms

14

Syntactical objects in Prolog

» To build clauses, Prolog uses different pieces:

constants (numbers, atoms — mainly lowercase identifiers, ...)

variables (X,Y, ThisThing, , GI107...)

operator terms (... 1+3 %4 ..))

structures (date(27,11,2007), person(fritz, mueller), ...

composite, recursive, “infinite”, ...)

« Note: Prolog has no type system!

fmidue.github.io/ProPa-Slides Programming Paradigms

Syntactical objects in Prolog

Structures in Prolog

» Structures represent objects that are made up of other objects (like trees and subtrees).

« Example:
functor | «——— must be an atom

d

Ir'd N
person (fritz, mueller, date(27,11,2007))

I

substructure

functors: person/3, date/3 (notation for arity)

» Through this, modelling of essentially “algebraic data types” — but not actually typed.
So, person (1,2, "'a") would also be a legal structure.

» Arbitrary nesting depth allowed — in principle infinite.

fmidue.github.io/ProPa-Slides Programming Paradigms 16

Syntactical objects in Prolog

Predefined syntax for special structures:

» There is a predefined “list type™ as recursive data structure:

[1,2,a] .(1,.(2,.(a,[1))) [1I[2,a]] [1,2]1[a]l]l [1,2].(a,[])]

 Character strings can be represented as lists of ASCII-Codes:

"prolog" = [80, 114, 111,108, 111, 103]
— (80, . (114, . (111, . (108, . (111, . (103,]))))

Operators:

» Operators are functors/atoms made from symbols and can be written infix.

» Example: in arithmetic expressions

» Mathematical functions are defined as operators.

e |1 + 3 * 4| istoberead as this structure: | +(1,*(3,4))

fmidue.github.io/ProPa-Slides Programming Paradigms 17

Syntactical objects in Prolog

Collective notion “terms’:

* Terms are constants, variables or structures:

fritz

27

MM

[europe, asia, africa | Rest]

person (fritz, Lastname, date (27, MM, 2007))

* A oround term 1s a term that does not contain variables:

person (fritz, mueller, date(27, 11, 2007))

fmidue.github.io/ProPa-Slides Programming Paradigms

18

Programming Paradigms

‘ Operational intuition for Prolog I

fmidue.github.io/ProPa-Slides Programming Paradigms

Operationalisation?

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).

. . istVaterVon (fritz,hans).
Specification (program) =

relation definitions istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvaterVon (kurt, X) Input: a query
(repeated) resolution

: |

Output: variable substitution(s)

fmidue.github.io/ProPa-Slides Programming Paradigms 20

Operationalisation in Prolog (1)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/
parameter
passing
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
S — oy
istGrossvaterVon (G,E) :- istVaterV*n(G,M),istMutterVon(M,E).

Ist reduction v

istVaterVon (kurt,V) I

fmidue.github.io/ProPa-Slides Programming Paradigms

21

Operationalisation in Prolog (2)

Principle: reduction to subproblems, where new subqueries are found from left to right!

istGrossvaterVon (kurt, X) I

matching/
parameter
passing
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S —— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonkM,E).

A\ 4

istVaterVon (kurt, fritz) I 2nd reduction
v
istVaterVon (fritz, E) I

fmidue.github.io/ProPa-Slides Programming Paradigms 22

Operationalisation in Prolog (3)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/ % return of
parameter result
passing parameter
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S—— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonijﬁ).

A\ 4

istVaterVon (kurt, fritz) I E = paul
v
istVaterVon (fritz,paul) I

fmidue.github.io/ProPa-Slides Programming Paradigms 23

Operationalisation in Prolog (4)

 Prolog always looks for matching rules or facts from top to bottom in the
program.

subquery: istVaterVon (fritz, E)
|

istVaterVon (kurt, fritz). .
solution:
istVaterVon (fritz,paul).

E = 1l
istVaterVon (fritz,6 hans). pau

* Since a relation generally is not a unique mapping, further answers for a (sub)query
may exist. Prolog finds those using backtracking:

re-try: istVaterVon (fritz, E)
' solution:
. istVaterVon (kurt, fritz).
position of last E = paul;
solution — that is where =———b»-istVaterVon (fritz,paul) . E = hans
search continues ‘»istVaterVon (fritz,hans) .

fmidue.github.io/ProPa-Slides Programming Paradigms 24

Operationalisation in Prolog (5)

Principle: reduction to subproblems

istGrossvaterVon (kurt, X) I

matching/ A return of
parameter § result
passing : parameter
istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).
v EA .. .
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
~— — A S—— —
istGrossvaterVon (G,E) :- istVaterV*n(G M),istMutterVonkMéE).

A\ 4

istVaterVon (kurt, fritz) I i E = hans
vV =
istVaterVon (fritz, hans) I

fmidue.github.io/ProPa-Slides Programming Paradigms 25

Operationalisation in Prolog (6)

The backtracking also concerns further matching rules:

istGrossvaterVon (kurt, X) I

matching/ | s
parameter |
passing | =
- istVaterVon (kurt, fritz) .
istVaterVon (fritz,paul).
istVaterVon (fritz,6 hans).
v:
istGrossvaterVon (G,E) :- istVaterVon(G,V) ,h istVaterVon (V,E).
v
istGrossvaterVon (G,E) :- istVaterVon(G,M) ,h istMutterVon (M,E).
.................................... ¥ L ———— L A
3rd reduction v

istVaterVon (kurt,6 M) I Failure!
v
istMutterVon (fritz, E) I

fmidue.github.io/ProPa-Slides Programming Paradigms 26

Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).

X =paul: D

Compare (within a Prolog system): use of ?- trace. I

fmidue.github.io/ProPa-Slides Programming Paradigms 27

Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).

X =paul:
X = hans: ?-.

Compare (within a Prolog system): use of ?- trace. I

fmidue.github.io/ProPa-Slides Programming Paradigms 28

Operationalisation on the example, presented differently

istVaterVon (kurt, fritz).
istVaterVon (fritz,paul).
istVaterVon (fritz,hans).

istGrossvaterVon (G,E) :-
istVaterVon (G,V) ,istVaterVon (V,E) .

istGrossvaterVon (G,E) :-
istVaterVon (G,M) ,istMutterVon (M,E) .

?- istGrossvater Von(kurt, X).

X =paul:
X = hans:

?- istVaterVon(kurt, M), istMutterVon(M, X).
?- istMutter Von(fritz, X).
Failure!

Compare (within a Prolog system): use of ?- trace. I

fmidue.github.io/ProPa-Slides Programming Paradigms 29

Programming Paradigms

‘ More Prolog examples I

fmidue.github.io/ProPa-Slides Programming Paradigms

Simple example for working with data structures

add (0,X,X) .
add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).

?- add(s(0),s(0),s(s(0))).
true.

?- add(s(0) ,s(0) ,N).
N = s(s(0)) ;
false.

* Recall, in Haskell:

data Nat = Zero | Succ Nat

add :: Nat - Nat — Nat
add Zero X =X
add (Succ x) y = Succ (add x y)

fmidue.github.io/ProPa-Slides Programming Paradigms 31

Systematic connection/derivation?

» Essential difference Haskell/Prolog:
Functions Vs. Predicates/Relations
fxy=z “corresponds to” p(X,Y,2).

 First a somewhat naive attempt to exploit this correspondence:

| add Zero X =X I

add(Zerg, X, X)

add(0,X,X) . I
| add (Succ x) y = Succ (add x y) I

v
add(Succ x, y, Succ (add x y))
v

77?

fmidue.github.io/ProPa-Slides Programming Paradigms

32

Systematic connection/derivation?

» Essential difference Haskell/Prolog:
Functions Vs. Predicates/Relations
fxy=z “corresponds to” p(X,Y,2).

» Systematically avoiding nested function calls:

| add (Succ x) y = Succ (add x y) I

v
| add (Succ x) y=Succz wherez=addxy I
v

add(Succ x, y, Succ z) if add(x,y, z)

add(s(X) ,Y¥,s(2)) :- add(X,Y,Z). I

fmidue.github.io/ProPa-Slides Programming Paradigms

33

On the flexibility of Prolog predicates

add(0,X,X) .

add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).

?- add(N,M,s(s(0))).
0,

s(s(0)) -

s (0),

s(0) ;

s(s(0)),

0o ;

?- add(N,s(0),s(s(0))).
N = s(0) ;
false.

?- add(N,M,0).

2?7

fmidue.github.io/ProPa-Slides Programming Paradigms

34

On the flexibility of Prolog predicates

add(0,X,X) .
add(s(X) ,Y¥,s(2)) :- add(X,Y,Z2).
sub(X,Y,Z) :- add(Z,Y,X).

?- sub(s(s(0)),s(0),N).
N = s(0) ;
false.

?- sub(N,M,s(0)).
N =s(M) ;
false.

fmidue.github.io/ProPa-Slides Programming Paradigms

35

Another example

Computing the length of a list in Haskell:

length [] 0
length (x:xs) = 1length xs + 1

Computing the length of a list in Prolog:

length([],0).

length ([X|Xs] ,N) :- length(Xs,M), N is M+1.

?- length([1,2,a], Res).

list with 3 arbitrary
(variable) elements

Res = 3.
?- length(List,3). x////////

List = [G331, G334, _G337]

fmidue.github.io/ProPa-Slides Programming Paradigms

Arithmetics vs. symbolic operator terms

Caution: If instead of:

length([],0).
length ([X|Xs] ,N) :- length(Xs,M), N is M+1.

WC uScC:

length([],0).
length([X|Xs] ,M+1l) :- length(Xs,M).

then:
?- length([1,2,a], Res).
Res = 0+1+1+1.

?- length(List,3).
false.

?- length (List,0+1+1+1).
List = [G331, G334, _G337].

fmidue.github.io/ProPa-Slides Programming Paradigms 37

An example corresponding to several nested calls

partition :: Int — [Int] — ([Int], [Int])

quicksort[] =[]
quicksort (h : t) = quicksort 1, ++ h : quicksort 1,
where (l,, 1,) = partition h t

i

quicksort [] =[]

quicksort (h : t) = Is ++ h : quicksort 1,
where (1,, 1,) = partition h t

Is = quicksort 1,

i

quicksort [] =[]
quicksort (h:t)= Is++h:lg
where (1,, 1,) = partitionht § _
Is = quicksort 1,
lg = quicksort 1,

lesson: “inner subexpressions first”

quicksort([], []).

quicksort ([H|T], List) :-
partition(H, T, L1, L2),
quicksort (L1, LS),
quicksort (L2, LG),
append (LS, [H|LG], List).

i

quicksort [] =[]
quicksort (h : t) = list
where (l,, 1,) = partition h t

Is = quicksort 1,

lg = quicksort 1,
list=1s++h:lg

fmidue.github.i0/ProPa-Slides

38

Programming Paradigms

	Foliennummer 1
	Foliennummer 2
	Prolog in simplest case: facts and queries
	Facts + simple implications
	More complex rules
	Relations, and more complex queries
	Variables in rules (not just in queries)
	Variables in rules (not just in queries)
	Some observations on variables
	Intuition on “free” variables
	Intuition on “free” variables
	Intuition on “free” variables
	Foliennummer 13
	Syntax / notions in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Foliennummer 19
	Operationalisation?
	Operationalisation in Prolog (1)
	Operationalisation in Prolog (2)
	Operationalisation in Prolog (3)
	Operationalisation in Prolog (4)
	Operationalisation in Prolog (5)
	Operationalisation in Prolog (6)
	Operationalisation on the example, presented differently
	Operationalisation on the example, presented differently
	Operationalisation on the example, presented differently
	Foliennummer 30
	Simple example for working with data structures
	Systematic connection/derivation?
	Systematic connection/derivation?
	On the flexibility of Prolog predicates
	On the flexibility of Prolog predicates
	Another example
	Arithmetics vs. symbolic operator terms
	An example corresponding to several nested calls
	Foliennummer 39
	Declarative semantics of Prolog
	Herbrand models
	Smallest Herbrand model
	Smallest Herbrand model
	Applicability of the semantics based on Herbrand models
	Applicability of the semantics based on Herbrand models
	Applicability of the semantics based on Herbrand models
	Foliennummer 47
	Motivation: Observing some not so nice (not so “logical”?) effects
	Motivation: Observing some not so nice (not so “logical”?) effects
	Somewhat more subtle…
	… and (thus) sometimes less flexibility than desired
	… and (thus) sometimes less flexibility than desired
	Moreover, caution needed when using/positioning negative literals
	Operational semantics of Prolog
	Foliennummer 55
	Analogy to Haskell: Pattern matching
	But what about “output variables”?
	Equality of terms (1)
	Equality of terms (2)
	Equality of terms (3)
	Equality of terms (4)
	Unification concepts, somewhat formally (1)
	Unification concepts, somewhat formally (2)
	Unification
	Unification – Computing a most general unifier
	Unification – Computing a most general unifier
	Unification algorithm – Examples
	Unification algorithm – Examples
	Unification algorithm – Examples
	Relevance of the “occurs check”
	Relevance of the “occurs check”
	Foliennummer 72
	Resolution in Prolog (1)
	Resolution in Prolog (2)
	Foliennummer 75
	Reminder: Motivation for considering operational semantics…
	Explicit enumeration of solutions
	Detailed description of the generation of derivation trees
	An example with infinite search
	Experiment with changed order of literals
	Experiment with changed order of literals
	Experiment with changed order of literals
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Back to the example: What to do?
	Attempt: introducing an extra test
	Only partial success
	Yet another “repair”
	A new “infinity trap”
	Exploiting commutativity
	Exploiting commutativity
	Indeed a generally useful definition
	Conclusion
	Foliennummer 96
	Negation (1)
	Negation (2)
	Negation (3)
	Negation (4)
	Negation (5)
	Negation (6)
	Negation (7)
	Negation (8)
	Summary on Negation
	Foliennummer 107
	The Cut operator (1)
	The Cut operator (2)
	The Cut operator (3)
	The Cut operator (4)
	The Cut operator (4)
	The Cut operator (4)
	The Cut operator (5)
	The Cut operator (6)
	The Cut operator (7)
	The Cut operator – sensible use (1)
	The Cut operator – sensible use (2)
	The Cut operator – conditional clauses
	Negation and Cut
	Summary on Cut
	Foliennummer 129
	Ein kleines „interaktives“ Programm (1)
	Ein kleines „interaktives“ Programm (2)
	Ein kleines „interaktives“ Programm (3)
	Versuch intelligenten Spielens
	Intelligentes Spielen, Inkaufnahme von Unentschieden
	Echte Interaktivität
	Code-Massage
	Foliennummer 137
	Logic programming: summary (1)
	Logic programming: summary (2)
	Foliennummer 141
	Symbolic language processing/representation (1)
	Symbolic language processing/representation (2)
	Symbolic language processing/representation (3)
	Symbolic language processing/representation (4)
	Symbolic language processing/representation (5)
	Symbolic language processing/representation (6)
	Symbolic language processing/representation (7)
	Another example: parsing of arithmetic expressions
	Another example: parsing of arithmetic expressions
	Another example: parsing of arithmetic expressions
	Foliennummer 161
	As a reminder: transitive closure, but now with a cycle
	As a reminder: transitive closure, but now with a cycle
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Foliennummer 175
	Generating all solutions to a query (1)
	Generating all solutions to a query (2)
	Generating all solutions to a query (3)
	Generating all solutions to a query (4)
	Generating all solutions to a query (5)
	Generating all solutions to a query (6)
	Foliennummer 190
	FP vs. LP: some general correspondences
	FP vs. LP: some general differences
	Functional-logic programming
	Functional-logic programming
	Functional-logic programming
	Zebra puzzle functional-logically (1)
	Zebra puzzle functional-logically (2)
	Recall: Ideal (and to some extent, history) of declarative programming
	A famous logical puzzle as a declaratively specified problem
	Puzzle (1)
	Puzzle (2)
	Puzzle (3)
	Puzzle (4)
	Puzzle (5)
	Puzzle (6)
	Puzzle: one possible specification in Prolog
	History of Prolog
	Literature on Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Herbrand models
	Herbrand models
	Smallest Herbrand model
	Smallest Herbrand model
	Unification as “bidirectional pattern matching”

