
fmidue.github.io/ProPa-Slides Programming Paradigms

Prof. Janis Voigtländer
University of Duisburg-Essen

Summer Term 2025

Programming Paradigms – Prolog part

fmidue.github.io/ProPa-Slides Programming Paradigms

Programming Paradigms

Prolog Basics

fmidue.github.io/ProPa-Slides Programming Paradigms 3

Prolog in simplest case: facts and queries

• A kind of data base with a number of facts:

• Queries:

woman(mia).
woman(jody).
woman(yolanda).
playsAirGuitar(jody).

?- woman(mia).
true.

?- playsAirGuitar(jody).
true.

?- playsAirGuitar(mia).
false.

?- playsAirGuitar(vincent).
false.

?- playsPiano(jody).
false.

The dot is essential!

or an error message

fmidue.github.io/ProPa-Slides Programming Paradigms 4

Facts + simple implications

• Queries:

happy(yolanda).
listens2Music(mia).
listens2Music(yolanda) :- happy(yolanda).
playsAirGuitar(mia) :- listens2Music(mia).
playsAirGuitar(yolanda) :- listens2Music(yolanda).

?- playsAirGuitar(mia).
true.

?- playsAirGuitar(yolanda).
true.

“if”

Head Body

happy(yolanda)

⇒ listens2Music(yolanda)

⇒ playsAirGuitar(yolanda)

because of:

fmidue.github.io/ProPa-Slides Programming Paradigms 5

More complex rules

• Queries:

• Alternative notation:

happy(vincent).
listens2Music(butch).
playsAirGuitar(vincent) :- listens2Music(vincent),

happy(vincent).
playsAirGuitar(butch) :- happy(butch).
playsAirGuitar(butch) :- listens2Music(butch).

?- playsAirGuitar(vincent).
false.

?- playsAirGuitar(butch).
true.

“and”

Alternatives

...
playsAirGuitar(butch) :- happy(butch);

listens2Music(butch).

“or”

fmidue.github.io/ProPa-Slides Programming Paradigms 6

Relations, and more complex queries

• Queries:

woman(mia).
woman(jody).
woman(yolanda).

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).
loves(vincent,vincent).

?- woman(X).
X = mia ;
X = jody ;
X = yolanda.

?- loves(vincent,X).
X = mia ;
X = vincent.

?- loves(vincent,X), woman(X).
X = mia ;
false.

multi-ary (concretely, binary)
predicate

semicolon entered by user

fmidue.github.io/ProPa-Slides Programming Paradigms 7

Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z).

?- jealous(marsellus,X).
X = vincent ;
X = marsellus ;
false.

?- jealous(X,_).
X = vincent ;
X = vincent ;
X = marsellus ;
X = marsellus ;
X = mia.

anonymous variable

fmidue.github.io/ProPa-Slides Programming Paradigms 8

Variables in rules (not just in queries)

• Queries:

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).
X = vincent ;
false.

?- jealous(X,_).
X = vincent ;
X = marsellus ;
false.

?- jealous(X,Y).
X = vincent,
Y = marsellus ;
X = marsellus,
Y = vincent ;
false.

important that at end

fmidue.github.io/ProPa-Slides Programming Paradigms 9

Some observations on variables

• Variables in rules and in queries are independent from each other.

• Within a rule or a query, the same variables represent the same objects.

• But different variables do not necessarily represent different objects.

• It is possible to have several occurrences of the same variable in a rule’s head!

• In a rule’s body there can be variables that do not occur in its head!

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

?- jealous(marsellus,X).
X = vincent ;
false.

fmidue.github.io/ProPa-Slides Programming Paradigms 10

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:
if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

???

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

fmidue.github.io/ProPa-Slides Programming Paradigms 11

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Possibly, for arbitrary (but fixed) X , Y:
if for every choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

fmidue.github.io/ProPa-Slides Programming Paradigms 12

Intuition on “free” variables

• What is the “logical” interpretation of Z above? (or of the whole rule?)

• Or, for arbitrary (but fixed) X , Y:
for every choice of Z holds: if loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

• Logically equivalent, for arbitrary (but fixed) X , Y:
if for any choice of Z holds: loves(X,Z), and loves(Y,Z), and X \= Y,
then also holds: jealous(X,Y)

loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.

fmidue.github.io/ProPa-Slides Programming Paradigms

Programming Paradigms

Syntactical ingredients of Prolog

fmidue.github.io/ProPa-Slides Programming Paradigms 14

Syntax / notions in Prolog

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V), istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M), istMutterVon(M,E).

?- istGrossvaterVon(kurt,paul).
?- istGrossvaterVon(kurt,fritz).
?- istGrossvaterVon(kurt,E).
?- istGrossvaterVon(G,paul).

rules

literal

queries

facts

clauses

conjunction

implication

predicate constant

variable

fmidue.github.io/ProPa-Slides Programming Paradigms 15

Syntactical objects in Prolog

• To build clauses, Prolog uses different pieces:

- constants (numbers, atoms – mainly lowercase identifiers, …)

- variables (X,Y, ThisThing, _, _G107…)

- operator terms (… 1 + 3 * 4 …)

- structures (date(27,11,2007), person(fritz, mueller), …

composite, recursive, “infinite”, …)

• Note: Prolog has no type system!

fmidue.github.io/ProPa-Slides Programming Paradigms 16

Syntactical objects in Prolog

Structures in Prolog

• Structures represent objects that are made up of other objects (like trees and subtrees).

• Example:

• Through this, modelling of essentially “algebraic data types” – but not actually typed.
So, person(1,2,'a') would also be a legal structure.

• Arbitrary nesting depth allowed – in principle infinite.

person(fritz, mueller, date(27,11,2007))

functor

substructure

functors: person/3, date/3 (notation for arity)

must be an atom

fmidue.github.io/ProPa-Slides Programming Paradigms 17

Syntactical objects in Prolog

• There is a predefined “list type” as recursive data structure:

[1,2,a] .(1,.(2,.(a,[]))) [1|[2,a]] [1,2|[a]] [1,2|.(a,[])]

• Character strings can be represented as lists of ASCII-Codes:

"Prolog" = [80, 114, 111, 108, 111, 103]
= .(80, . (114, . (111, . (108, . (111, . (103, [])))))

Predefined syntax for special structures:

Operators:

• Operators are functors/atoms made from symbols and can be written infix.

• Example: in arithmetic expressions

• Mathematical functions are defined as operators.

• is to be read as this structure:1 + 3 * 4 +(1,*(3,4))

fmidue.github.io/ProPa-Slides Programming Paradigms 18

Syntactical objects in Prolog

Collective notion “terms”:

• Terms are constants, variables or structures:

fritz
27
MM
[europe, asia, africa | Rest]
person(fritz, Lastname, date(27, MM, 2007))

• A ground term is a term that does not contain variables:

person(fritz, mueller, date(27, 11, 2007))

fmidue.github.io/ProPa-Slides Programming Paradigms

Programming Paradigms

Operational intuition for Prolog

fmidue.github.io/ProPa-Slides Programming Paradigms 20

Operationalisation?

Specification (program) ≡
relation definitions

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt,X)

⇝ …

⇝ …

⇝ …

⇝ …

⇝ X = paul ; X = hans

Input: a query

Output: variable substitution(s)

(repeated) resolution

fmidue.github.io/ProPa-Slides

Principle: reduction to subproblems

Programming Paradigms 21

. .

Operationalisation in Prolog (1)

istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,V)

matching/
parameter
passing

1st reduction

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

fmidue.github.io/ProPa-Slides Programming Paradigms 22

. . .

Operationalisation in Prolog (2)

.istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

2nd reduction

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,E)

Principle: reduction to subproblems, where new subqueries are found from left to right!

fmidue.github.io/ProPa-Slides Programming Paradigms 23

. .

Operationalisation in Prolog (3)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,paul)

E = paul

return of
result
parameter

Principle: reduction to subproblems

fmidue.github.io/ProPa-Slides Programming Paradigms 24

Operationalisation in Prolog (4)

• Prolog always looks for matching rules or facts from top to bottom in the
program.

• Since a relation generally is not a unique mapping, further answers for a (sub)query
may exist. Prolog finds those using backtracking:

istVaterVon(kurt,fritz).

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

subquery: istVaterVon(fritz,E)

istVaterVon(kurt,fritz).

istVaterVon(fritz,paul).

istVaterVon(fritz,hans).

re-try: istVaterVon(fritz,E)

position of last
solution – that is where

search continues

solution:
E = paul

solution:
E = paul;
E = hans

fmidue.github.io/ProPa-Slides Programming Paradigms 25

. .

Operationalisation in Prolog (5)

. . ..istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,fritz)

matching/
parameter
passing

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istVaterVon(fritz,hans)

E = hans

return of
result
parameter

Principle: reduction to subproblems

fmidue.github.io/ProPa-Slides Programming Paradigms 26

. .

Operationalisation in Prolog (6)

The backtracking also concerns further matching rules:

. .
istGrossvaterVon(G,E) :- istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :- istVaterVon(G,M),istMutterVon(M,E).

istGrossvaterVon(kurt, X)

istVaterVon(kurt,M)

matching/
parameter
passing

3rd reduction

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istMutterVon(fritz,E)

Failure!

fmidue.github.io/ProPa-Slides Programming Paradigms 27

Operationalisation on the example, presented differently

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .X = paul:

Compare (within a Prolog system): use of ?- trace.

fmidue.github.io/ProPa-Slides Programming Paradigms 28

Operationalisation on the example, presented differently

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .
?- .

X = paul:
X = hans:

Compare (within a Prolog system): use of ?- trace.

fmidue.github.io/ProPa-Slides Programming Paradigms 29

Operationalisation on the example, presented differently

istVaterVon(kurt,fritz).
istVaterVon(fritz,paul).
istVaterVon(fritz,hans).

istGrossvaterVon(G,E) :-
istVaterVon(G,V),istVaterVon(V,E).

istGrossvaterVon(G,E) :-
istVaterVon(G,M),istMutterVon(M,E).

?- istGrossvaterVon(kurt, X).
?- istVaterVon(kurt, V), istVaterVon(V, X).
?- istVaterVon(fritz, X).
?- .
?- .
?- istVaterVon(kurt, M), istMutterVon(M, X).
?- istMutterVon(fritz, X).

X = paul:
X = hans:

Failure!

Compare (within a Prolog system): use of ?- trace.

fmidue.github.io/ProPa-Slides Programming Paradigms

Programming Paradigms

More Prolog examples

fmidue.github.io/ProPa-Slides Programming Paradigms 31

Simple example for working with data structures

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

data Nat = Zero | Succ Nat

add :: Nat → Nat → Nat
add Zero x = x
add (Succ x) y = Succ (add x y)

?- add(s(0),s(0),s(s(0))).
true.

?- add(s(0),s(0),N).
N = s(s(0)) ;
false.

• Recall, in Haskell:

fmidue.github.io/ProPa-Slides Programming Paradigms 32

Systematic connection/derivation?

add(0,X,X).

add Zero x = x

• Essential difference Haskell/Prolog:

Functions vs. Predicates/Relations

f x y = z “corresponds to” p(X,Y,Z).

• First a somewhat naïve attempt to exploit this correspondence:

add (Succ x) y = Succ (add x y)

add(Zero, x, x)

add(Succ x, y, Succ (add x y))

???

fmidue.github.io/ProPa-Slides

add (Succ x) y = Succ (add x y)

Programming Paradigms 33

Systematic connection/derivation?

add(s(X),Y,s(Z)) :- add(X,Y,Z).

add(Succ x, y, Succ z) if add(x, y, z)

add (Succ x) y = Succ z where z = add x y

• Essential difference Haskell/Prolog:

Functions vs. Predicates/Relations

f x y = z “corresponds to” p(X,Y,Z).

• Systematically avoiding nested function calls:

fmidue.github.io/ProPa-Slides Programming Paradigms 34

On the flexibility of Prolog predicates

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

?- add(N,M,s(s(0))).
N = 0,
M = s(s(0)) ;
N = s(0),
M = s(0) ;
N = s(s(0)),
M = 0 ;
false.

?- add(N,s(0),s(s(0))).
N = s(0) ;
false.

?- add(N,M,O). ???

fmidue.github.io/ProPa-Slides Programming Paradigms 35

On the flexibility of Prolog predicates

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

sub(X,Y,Z) :- add(Z,Y,X).

?- sub(s(s(0)),s(0),N).
N = s(0) ;
false.

?- sub(N,M,s(0)).
N = s(M) ;
false.

fmidue.github.io/ProPa-Slides Programming Paradigms 36

Another example

Computing the length of a list in Haskell:

length [] = 0
length (x:xs) = length xs + 1

Computing the length of a list in Prolog:

length([],0).
length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).
Res = 3.

?- length(List,3).
List = [_G331, _G334, _G337]

list with 3 arbitrary
(variable) elements

fmidue.github.io/ProPa-Slides Programming Paradigms 37

Arithmetics vs. symbolic operator terms

Caution: If instead of:

we use:

then:

length([],0).
length([X|Xs],N) :- length(Xs,M), N is M+1.

?- length([1,2,a],Res).
Res = 0+1+1+1.

?- length(List,3).
false.

?- length(List,0+1+1+1).
List = [_G331, _G334, _G337].

length([],0).
length([X|Xs],M+1) :- length(Xs,M).

fmidue.github.io/ProPa-Slides Programming Paradigms 38

An example corresponding to several nested calls

partition :: Int → [Int] → ([Int], [Int])
…

quicksort [] = []
quicksort (h : t) = quicksort l1 ++ h : quicksort l2

where (l1, l2) = partition h t

quicksort [] = []
quicksort (h : t) = ls ++ h : quicksort l2

where (l1, l2) = partition h t
ls = quicksort l1

quicksort [] = []
quicksort (h : t) = ls ++ h : lg

where (l1, l2) = partition h t
ls = quicksort l1
lg = quicksort l2

quicksort [] = []
quicksort (h : t) = list

where (l1, l2) = partition h t
ls = quicksort l1
lg = quicksort l2
list = ls ++ h : lg

quicksort([], []).
quicksort([H|T], List) :-

partition(H, T, L1, L2),
quicksort(L1, LS),
quicksort(L2, LG),
append(LS, [H|LG], List).

lesson: “inner subexpressions first”

	Foliennummer 1
	Foliennummer 2
	Prolog in simplest case: facts and queries
	Facts + simple implications
	More complex rules
	Relations, and more complex queries
	Variables in rules (not just in queries)
	Variables in rules (not just in queries)
	Some observations on variables
	Intuition on “free” variables
	Intuition on “free” variables
	Intuition on “free” variables
	Foliennummer 13
	Syntax / notions in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Foliennummer 19
	Operationalisation?
	Operationalisation in Prolog (1)
	Operationalisation in Prolog (2)
	Operationalisation in Prolog (3)
	Operationalisation in Prolog (4)
	Operationalisation in Prolog (5)
	Operationalisation in Prolog (6)
	Operationalisation on the example, presented differently
	Operationalisation on the example, presented differently
	Operationalisation on the example, presented differently
	Foliennummer 30
	Simple example for working with data structures
	Systematic connection/derivation?
	Systematic connection/derivation?
	On the flexibility of Prolog predicates
	On the flexibility of Prolog predicates
	Another example
	Arithmetics vs. symbolic operator terms
	An example corresponding to several nested calls
	Foliennummer 39
	Declarative semantics of Prolog
	Herbrand models
	Smallest Herbrand model
	Smallest Herbrand model
	Applicability of the semantics based on Herbrand models
	Applicability of the semantics based on Herbrand models
	Applicability of the semantics based on Herbrand models
	Foliennummer 47
	Motivation: Observing some not so nice (not so “logical”?) effects
	Motivation: Observing some not so nice (not so “logical”?) effects
	Somewhat more subtle…
	… and (thus) sometimes less flexibility than desired
	… and (thus) sometimes less flexibility than desired
	Moreover, caution needed when using/positioning negative literals
	Operational semantics of Prolog
	Foliennummer 55
	Analogy to Haskell: Pattern matching
	But what about “output variables”?
	Equality of terms (1)
	Equality of terms (2)
	Equality of terms (3)
	Equality of terms (4)
	Unification concepts, somewhat formally (1)
	Unification concepts, somewhat formally (2)
	Unification
	Unification – Computing a most general unifier
	Unification – Computing a most general unifier
	Unification algorithm – Examples
	Unification algorithm – Examples
	Unification algorithm – Examples
	Relevance of the “occurs check”
	Relevance of the “occurs check”
	Foliennummer 72
	Resolution in Prolog (1)
	Resolution in Prolog (2)
	Foliennummer 75
	Reminder: Motivation for considering operational semantics…
	Explicit enumeration of solutions
	Detailed description of the generation of derivation trees
	An example with infinite search
	Experiment with changed order of literals
	Experiment with changed order of literals
	Experiment with changed order of literals
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Detailed description of the generation of derivation trees
	Back to the example: What to do?
	Attempt: introducing an extra test
	Only partial success
	Yet another “repair”
	A new “infinity trap”
	Exploiting commutativity
	Exploiting commutativity
	Indeed a generally useful definition
	Conclusion
	Foliennummer 96
	Negation (1)
	Negation (2)
	Negation (3)
	Negation (4)
	Negation (5)
	Negation (6)
	Negation (7)
	Negation (8)
	Summary on Negation
	Foliennummer 107
	The Cut operator (1)
	The Cut operator (2)
	The Cut operator (3)
	The Cut operator (4)
	The Cut operator (4)
	The Cut operator (4)
	The Cut operator (5)
	The Cut operator (6)
	The Cut operator (7)
	The Cut operator – sensible use (1)
	The Cut operator – sensible use (2)
	The Cut operator – conditional clauses
	Negation and Cut
	Summary on Cut
	Foliennummer 129
	Ein kleines „interaktives“ Programm (1)
	Ein kleines „interaktives“ Programm (2)
	Ein kleines „interaktives“ Programm (3)
	Versuch intelligenten Spielens
	Intelligentes Spielen, Inkaufnahme von Unentschieden
	Echte Interaktivität
	Code-Massage
	Foliennummer 137
	Logic programming: summary (1)
	Logic programming: summary (2)
	Foliennummer 141
	Symbolic language processing/representation (1)
	Symbolic language processing/representation (2)
	Symbolic language processing/representation (3)
	Symbolic language processing/representation (4)
	Symbolic language processing/representation (5)
	Symbolic language processing/representation (6)
	Symbolic language processing/representation (7)
	Another example: parsing of arithmetic expressions
	Another example: parsing of arithmetic expressions
	Another example: parsing of arithmetic expressions
	Foliennummer 161
	As a reminder: transitive closure, but now with a cycle
	As a reminder: transitive closure, but now with a cycle
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Program facts as data structure
	Foliennummer 175
	Generating all solutions to a query (1)
	Generating all solutions to a query (2)
	Generating all solutions to a query (3)
	Generating all solutions to a query (4)
	Generating all solutions to a query (5)
	Generating all solutions to a query (6)
	Foliennummer 190
	FP vs. LP: some general correspondences
	FP vs. LP: some general differences
	Functional-logic programming
	Functional-logic programming
	Functional-logic programming
	Zebra puzzle functional-logically (1)
	Zebra puzzle functional-logically (2)
	Recall: Ideal (and to some extent, history) of declarative programming
	A famous logical puzzle as a declaratively specified problem
	Puzzle (1)
	Puzzle (2)
	Puzzle (3)
	Puzzle (4)
	Puzzle (5)
	Puzzle (6)
	Puzzle: one possible specification in Prolog
	History of Prolog
	Literature on Prolog
	Syntactical objects in Prolog
	Syntactical objects in Prolog
	Herbrand models
	Herbrand models
	Smallest Herbrand model
	Smallest Herbrand model
	Unification as “bidirectional pattern matching”

