| Safe Haskell | None |
|---|---|
| Language | Haskell98 |
Autolib.Reader.Class
Synopsis
- class Reader a where
- atomic_reader :: Parser a
- atomic_readerPrec :: Int -> Parser a
- reader :: Parser a
- readerPrec :: Int -> Parser a
- readerList :: Parser [a]
- readerPrec :: Reader a => Int -> Parser a
- readerParenPrec :: Int -> (Int -> Parser a) -> Parser a
- parse_complete :: Parser p -> Parser p
- atomic_readerPrec_with :: (Generic a, GReader (Rep a)) => a -> Int -> Parser a
- alphaNum :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- anyChar :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- char :: forall s (m :: Type -> Type) u. Stream s m Char => Char -> ParsecT s u m Char
- digit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- hexDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- letter :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- lower :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- newline :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- noneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char
- octDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- oneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char
- satisfy :: forall s (m :: Type -> Type) u. Stream s m Char => (Char -> Bool) -> ParsecT s u m Char
- space :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- spaces :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m ()
- string :: forall s (m :: Type -> Type) u. Stream s m Char => String -> ParsecT s u m String
- tab :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- upper :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- anyToken :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m t
- between :: forall s (m :: Type -> Type) t u open close a. Stream s m t => ParsecT s u m open -> ParsecT s u m close -> ParsecT s u m a -> ParsecT s u m a
- chainl :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a
- chainl1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a
- chainr :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a
- chainr1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a
- choice :: forall s (m :: Type -> Type) t u a. Stream s m t => [ParsecT s u m a] -> ParsecT s u m a
- count :: forall s (m :: Type -> Type) t u a. Stream s m t => Int -> ParsecT s u m a -> ParsecT s u m [a]
- endBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- endBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- eof :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m ()
- manyTill :: forall s (m :: Type -> Type) t u a end. Stream s m t => ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a]
- notFollowedBy :: forall s (m :: Type -> Type) t a u. (Stream s m t, Show a) => ParsecT s u m a -> ParsecT s u m ()
- option :: forall s (m :: Type -> Type) t a u. Stream s m t => a -> ParsecT s u m a -> ParsecT s u m a
- optionMaybe :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (Maybe a)
- optional :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m ()
- sepBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- sepBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- sepEndBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- sepEndBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- skipMany1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m ()
- errorPos :: ParseError -> SourcePos
- incSourceColumn :: SourcePos -> Column -> SourcePos
- incSourceLine :: SourcePos -> Line -> SourcePos
- setSourceColumn :: SourcePos -> Column -> SourcePos
- setSourceLine :: SourcePos -> Line -> SourcePos
- setSourceName :: SourcePos -> SourceName -> SourcePos
- sourceColumn :: SourcePos -> Column
- sourceLine :: SourcePos -> Line
- sourceName :: SourcePos -> SourceName
- (<?>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a
- (<|>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
- getInput :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m s
- getParserState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m (State s u)
- getPosition :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m SourcePos
- getState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m u
- labels :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> [String] -> ParsecT s u m a
- lookAhead :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m a
- many :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a]
- many1 :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a]
- parse :: Stream s Identity t => Parsec s () a -> SourceName -> s -> Either ParseError a
- parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO ()
- setInput :: forall (m :: Type -> Type) s u. Monad m => s -> ParsecT s u m ()
- setParserState :: forall (m :: Type -> Type) s u. Monad m => State s u -> ParsecT s u m (State s u)
- setPosition :: forall (m :: Type -> Type) s u. Monad m => SourcePos -> ParsecT s u m ()
- setState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m ()
- skipMany :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m ()
- token :: Stream s Identity t => (t -> String) -> (t -> SourcePos) -> (t -> Maybe a) -> Parsec s u a
- tokenPrim :: forall s (m :: Type -> Type) t a u. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> (t -> Maybe a) -> ParsecT s u m a
- tokenPrimEx :: forall s (m :: Type -> Type) t u a. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> Maybe (SourcePos -> t -> s -> u -> u) -> (t -> Maybe a) -> ParsecT s u m a
- tokens :: forall s (m :: Type -> Type) t u. (Stream s m t, Eq t) => ([t] -> String) -> (SourcePos -> [t] -> SourcePos) -> [t] -> ParsecT s u m [t]
- unexpected :: forall s (m :: Type -> Type) t u a. Stream s m t => String -> ParsecT s u m a
- updateState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m ()
- parseFromFile :: Parser a -> FilePath -> IO (Either ParseError a)
- pzero :: GenParser tok st a
- runParser :: GenParser tok st a -> st -> SourceName -> [tok] -> Either ParseError a
- try :: GenParser tok st a -> GenParser tok st a
- data ParseError
- type Column = Int
- type Line = Int
- type SourceName = String
- data SourcePos
- stateInput :: State s u -> s
- statePos :: State s u -> SourcePos
- stateUser :: State s u -> u
- type GenParser tok st = Parsec [tok] st
- type Parser = Parsec String ()
- type CharParser st = GenParser Char st
- guard :: Alternative f => Bool -> f ()
- fcp :: Int
- listify :: Parser a -> Parser [a]
Documentation
atomic_reader or atomic_readerPrec must be implemented.
it can start parsing right away.
from the outside, you should call reader
which allows enclosing parentheses.
to require enclosing parentheses,
explicitely use reader_Paren True
Minimal complete definition
Nothing
Methods
atomic_reader :: Parser a Source #
atomic_readerPrec :: Int -> Parser a Source #
readerPrec :: Int -> Parser a Source #
readerList :: Parser [a] Source #
Instances
parse_complete :: Parser p -> Parser p Source #
alphaNum :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a alphabetic or numeric Unicode characters
according to isAlphaNum. Returns the parsed character.
Note that numeric digits outside the ASCII range (such as arabic-indic digits like e.g. "٤" or U+0664),
as well as numeric characters which aren't digits, are parsed by this function
but not by digit.
anyChar :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
This parser succeeds for any character. Returns the parsed character.
char :: forall s (m :: Type -> Type) u. Stream s m Char => Char -> ParsecT s u m Char #
char c parses a single character c. Returns the parsed
character (i.e. c).
semiColon = char ';'
digit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an ASCII digit. Returns the parsed character.
hexDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a hexadecimal digit (a digit or a letter between 'a' and 'f' or 'A' and 'F'). Returns the parsed character.
letter :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an alphabetic Unicode characters (lower-case, upper-case and title-case letters,
plus letters of caseless scripts and modifiers letters according to isAlpha).
Returns the parsed character.
lower :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a lower case character (according to isLower).
Returns the parsed character.
newline :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a newline character ('\n'). Returns a newline character.
noneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char #
As the dual of oneOf, noneOf cs succeeds if the current
character not in the supplied list of characters cs. Returns the
parsed character.
consonant = noneOf "aeiou"
octDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an octal digit (a character between '0' and '7'). Returns the parsed character.
oneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char #
oneOf cs succeeds if the current character is in the supplied
list of characters cs. Returns the parsed character. See also
satisfy.
vowel = oneOf "aeiou"
satisfy :: forall s (m :: Type -> Type) u. Stream s m Char => (Char -> Bool) -> ParsecT s u m Char #
The parser satisfy f succeeds for any character for which the
supplied function f returns True. Returns the character that is
actually parsed.
space :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a white space character (any character which satisfies isSpace)
Returns the parsed character.
spaces :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m () #
Skips zero or more white space characters. See also skipMany.
tab :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a tab character ('\t'). Returns a tab character.
upper :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an upper case letter (according to isUpper).
Returns the parsed character.
anyToken :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m t #
The parser anyToken accepts any kind of token. It is for example
used to implement eof. Returns the accepted token.
between :: forall s (m :: Type -> Type) t u open close a. Stream s m t => ParsecT s u m open -> ParsecT s u m close -> ParsecT s u m a -> ParsecT s u m a #
between open close p parses open, followed by p and close.
Returns the value returned by p.
braces = between (symbol "{") (symbol "}")chainl :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a #
chainl p op x parses zero or more occurrences of p,
separated by op. Returns a value obtained by a left associative
application of all functions returned by op to the values returned
by p. If there are zero occurrences of p, the value x is
returned.
chainl1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a #
chainl1 p op parses one or more occurrences of p,
separated by op Returns a value obtained by a left associative
application of all functions returned by op to the values returned
by p. This parser can for example be used to eliminate left
recursion which typically occurs in expression grammars.
expr = term `chainl1` addop
term = factor `chainl1` mulop
factor = parens expr <|> integer
mulop = do{ symbol "*"; return (*) }
<|> do{ symbol "/"; return (div) }
addop = do{ symbol "+"; return (+) }
<|> do{ symbol "-"; return (-) }chainr :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a #
chainr p op x parses zero or more occurrences of p,
separated by op Returns a value obtained by a right associative
application of all functions returned by op to the values returned
by p. If there are no occurrences of p, the value x is
returned.
chainr1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a #
chainr1 p op x parses one or more occurrences of |p|,
separated by op Returns a value obtained by a right associative
application of all functions returned by op to the values returned
by p.
choice :: forall s (m :: Type -> Type) t u a. Stream s m t => [ParsecT s u m a] -> ParsecT s u m a #
choice ps tries to apply the parsers in the list ps in order,
until one of them succeeds. Returns the value of the succeeding
parser.
count :: forall s (m :: Type -> Type) t u a. Stream s m t => Int -> ParsecT s u m a -> ParsecT s u m [a] #
count n p parses n occurrences of p. If n is smaller or
equal to zero, the parser equals to return []. Returns a list of
n values returned by p.
endBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
endBy p sep parses zero or more occurrences of p, separated
and ended by sep. Returns a list of values returned by p.
cStatements = cStatement `endBy` semi
endBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
endBy1 p sep parses one or more occurrences of p, separated
and ended by sep. Returns a list of values returned by p.
eof :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m () #
This parser only succeeds at the end of the input. This is not a
primitive parser but it is defined using notFollowedBy.
eof = notFollowedBy anyToken <?> "end of input"
manyTill :: forall s (m :: Type -> Type) t u a end. Stream s m t => ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a] #
manyTill p end applies parser p zero or more times until
parser end succeeds. Returns the list of values returned by p.
This parser can be used to scan comments:
simpleComment = do{ string "<!--"
; manyTill anyChar (try (string "-->"))
}Note the overlapping parsers anyChar and string "-->", and
therefore the use of the try combinator.
notFollowedBy :: forall s (m :: Type -> Type) t a u. (Stream s m t, Show a) => ParsecT s u m a -> ParsecT s u m () #
notFollowedBy p only succeeds when parser p fails. This parser
does not consume any input. This parser can be used to implement the
'longest match' rule. For example, when recognizing keywords (for
example let), we want to make sure that a keyword is not followed
by a legal identifier character, in which case the keyword is
actually an identifier (for example lets). We can program this
behaviour as follows:
keywordLet = try (do{ string "let"
; notFollowedBy alphaNum
})NOTE: Currently, notFollowedBy exhibits surprising behaviour
when applied to a parser p that doesn't consume any input;
specifically
is not equivalent tonotFollowedBy.notFollowedBylookAhead, andnever fails.notFollowedByeof
See haskell/parsec#8 for more details.
option :: forall s (m :: Type -> Type) t a u. Stream s m t => a -> ParsecT s u m a -> ParsecT s u m a #
option x p tries to apply parser p. If p fails without
consuming input, it returns the value x, otherwise the value
returned by p.
priority = option 0 (do{ d <- digit
; return (digitToInt d)
})optionMaybe :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (Maybe a) #
optional :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m () #
optional p tries to apply parser p. It will parse p or nothing.
It only fails if p fails after consuming input. It discards the result
of p.
sepBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepBy p sep parses zero or more occurrences of p, separated
by sep. Returns a list of values returned by p.
commaSep p = p `sepBy` (symbol ",")
sepBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepBy1 p sep parses one or more occurrences of p, separated
by sep. Returns a list of values returned by p.
sepEndBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepEndBy p sep parses zero or more occurrences of p,
separated and optionally ended by sep, ie. haskell style
statements. Returns a list of values returned by p.
haskellStatements = haskellStatement `sepEndBy` semi
sepEndBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepEndBy1 p sep parses one or more occurrences of p,
separated and optionally ended by sep. Returns a list of values
returned by p.
skipMany1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m () #
skipMany1 p applies the parser p one or more times, skipping
its result.
errorPos :: ParseError -> SourcePos #
Extracts the source position from the parse error
incSourceColumn :: SourcePos -> Column -> SourcePos #
Increments the column number of a source position.
incSourceLine :: SourcePos -> Line -> SourcePos #
Increments the line number of a source position.
setSourceColumn :: SourcePos -> Column -> SourcePos #
Set the column number of a source position.
setSourceLine :: SourcePos -> Line -> SourcePos #
Set the line number of a source position.
setSourceName :: SourcePos -> SourceName -> SourcePos #
Set the name of the source.
sourceColumn :: SourcePos -> Column #
Extracts the column number from a source position.
sourceLine :: SourcePos -> Line #
Extracts the line number from a source position.
sourceName :: SourcePos -> SourceName #
Extracts the name of the source from a source position.
(<?>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a infix 0 #
The parser p <?> msg behaves as parser p, but whenever the
parser p fails without consuming any input, it replaces expect
error messages with the expect error message msg.
This is normally used at the end of a set alternatives where we want
to return an error message in terms of a higher level construct
rather than returning all possible characters. For example, if the
expr parser from the try example would fail, the error
message is: '...: expecting expression'. Without the (<?>)
combinator, the message would be like '...: expecting "let" or
letter', which is less friendly.
(<|>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a infixr 1 #
This combinator implements choice. The parser p <|> q first
applies p. If it succeeds, the value of p is returned. If p
fails without consuming any input, parser q is tried. This
combinator is defined equal to the mplus member of the MonadPlus
class and the (<|>) member of Alternative.
The parser is called predictive since q is only tried when
parser p didn't consume any input (i.e.. the look ahead is 1).
This non-backtracking behaviour allows for both an efficient
implementation of the parser combinators and the generation of good
error messages.
getParserState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m (State s u) #
Returns the full parser state as a State record.
getPosition :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m SourcePos #
Returns the current source position. See also SourcePos.
getState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m u #
Returns the current user state.
lookAhead :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m a #
lookAhead p parses p without consuming any input.
If p fails and consumes some input, so does lookAhead. Combine with try
if this is undesirable.
many :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a] #
many p applies the parser p zero or more times. Returns a
list of the returned values of p.
identifier = do{ c <- letter
; cs <- many (alphaNum <|> char '_')
; return (c:cs)
}many1 :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a] #
many1 p applies the parser p one or more times. Returns a
list of the returned values of p.
word = many1 letter
parse :: Stream s Identity t => Parsec s () a -> SourceName -> s -> Either ParseError a #
parse p filePath input runs a parser p over Identity without user
state. The filePath is only used in error messages and may be the
empty string. Returns either a ParseError (Left)
or a value of type a (Right).
main = case (parse numbers "" "11, 2, 43") of
Left err -> print err
Right xs -> print (sum xs)
numbers = commaSep integerparseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO () #
The expression parseTest p input applies a parser p against
input input and prints the result to stdout. Used for testing
parsers.
setInput :: forall (m :: Type -> Type) s u. Monad m => s -> ParsecT s u m () #
setInput input continues parsing with input. The getInput and
setInput functions can for example be used to deal with #include
files.
setParserState :: forall (m :: Type -> Type) s u. Monad m => State s u -> ParsecT s u m (State s u) #
setParserState st set the full parser state to st.
setPosition :: forall (m :: Type -> Type) s u. Monad m => SourcePos -> ParsecT s u m () #
setPosition pos sets the current source position to pos.
setState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m () #
An alias for putState for backwards compatibility.
skipMany :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m () #
skipMany p applies the parser p zero or more times, skipping
its result.
spaces = skipMany space
Arguments
| :: Stream s Identity t | |
| => (t -> String) | Token pretty-printing function. |
| -> (t -> SourcePos) | Computes the position of a token. |
| -> (t -> Maybe a) | Matching function for the token to parse. |
| -> Parsec s u a |
The parser token showTok posFromTok testTok accepts a token t
with result x when the function testTok t returns . The
source position of the Just xt should be returned by posFromTok t and
the token can be shown using showTok t.
This combinator is expressed in terms of tokenPrim.
It is used to accept user defined token streams. For example,
suppose that we have a stream of basic tokens tupled with source
positions. We can then define a parser that accepts single tokens as:
mytoken x
= token showTok posFromTok testTok
where
showTok (pos,t) = show t
posFromTok (pos,t) = pos
testTok (pos,t) = if x == t then Just t else NothingArguments
| :: forall s (m :: Type -> Type) t a u. Stream s m t | |
| => (t -> String) | Token pretty-printing function. |
| -> (SourcePos -> t -> s -> SourcePos) | Next position calculating function. |
| -> (t -> Maybe a) | Matching function for the token to parse. |
| -> ParsecT s u m a |
The parser tokenPrim showTok nextPos testTok accepts a token t
with result x when the function testTok t returns . The
token can be shown using Just xshowTok t. The position of the next
token should be returned when nextPos is called with the current
source position pos, the current token t and the rest of the
tokens toks, nextPos pos t toks.
This is the most primitive combinator for accepting tokens. For
example, the char parser could be implemented as:
char c
= tokenPrim showChar nextPos testChar
where
showChar x = "'" ++ x ++ "'"
testChar x = if x == c then Just x else Nothing
nextPos pos x xs = updatePosChar pos xtokenPrimEx :: forall s (m :: Type -> Type) t u a. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> Maybe (SourcePos -> t -> s -> u -> u) -> (t -> Maybe a) -> ParsecT s u m a #
tokens :: forall s (m :: Type -> Type) t u. (Stream s m t, Eq t) => ([t] -> String) -> (SourcePos -> [t] -> SourcePos) -> [t] -> ParsecT s u m [t] #
unexpected :: forall s (m :: Type -> Type) t u a. Stream s m t => String -> ParsecT s u m a #
The parser unexpected msg always fails with an unexpected error
message msg without consuming any input.
The parsers fail, (<?>) and unexpected are the three parsers
used to generate error messages. Of these, only (<?>) is commonly
used. For an example of the use of unexpected, see the definition
of notFollowedBy.
updateState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m () #
An alias for modifyState for backwards compatibility.
parseFromFile :: Parser a -> FilePath -> IO (Either ParseError a) #
parseFromFile p filePath runs a string parser p on the
input read from filePath using readFile. Returns either a ParseError
(Left) or a value of type a (Right).
main = do{ result <- parseFromFile numbers "digits.txt"
; case result of
Left err -> print err
Right xs -> print (sum xs)
}runParser :: GenParser tok st a -> st -> SourceName -> [tok] -> Either ParseError a #
data ParseError #
The abstract data type ParseError represents parse errors. It
provides the source position (SourcePos) of the error
and a list of error messages (Message). A ParseError
can be returned by the function parse. ParseError is an
instance of the Show and Eq classes.
Instances
| Exception ParseError # | Since: parsec-3.1.17.0 |
Defined in Text.Parsec.Error Methods toException :: ParseError -> SomeException # fromException :: SomeException -> Maybe ParseError # displayException :: ParseError -> String # backtraceDesired :: ParseError -> Bool # | |
| Show ParseError # | |
Defined in Text.Parsec.Error Methods showsPrec :: Int -> ParseError -> ShowS # show :: ParseError -> String # showList :: [ParseError] -> ShowS # | |
| Eq ParseError # | |
Defined in Text.Parsec.Error | |
type SourceName = String #
The abstract data type SourcePos represents source positions. It
contains the name of the source (i.e. file name), a line number and
a column number. SourcePos is an instance of the Show, Eq and
Ord class.
Instances
| Data SourcePos # | |
Defined in Text.Parsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos # toConstr :: SourcePos -> Constr # dataTypeOf :: SourcePos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # | |
| Show SourcePos # | |
| Eq SourcePos # | |
| Ord SourcePos # | |
stateInput :: State s u -> s #
type CharParser st = GenParser Char st #
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signalling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signalling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>>safeDiv 4 0Nothing
>>>safeDiv 4 2Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)