{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
module Diagrams.TwoD.Points where
import Data.List
import Diagrams.Core
import Diagrams.TwoD.Vector
import Diagrams.TwoD.Types (P2)
import Linear.Affine
convexHull2D :: OrderedField n => [P2 n] -> [P2 n]
convexHull2D :: forall n. OrderedField n => [P2 n] -> [P2 n]
convexHull2D [P2 n]
ps = [P2 n] -> [P2 n]
forall a. HasCallStack => [a] -> [a]
init [P2 n]
upper [P2 n] -> [P2 n] -> [P2 n]
forall a. [a] -> [a] -> [a]
++ [P2 n] -> [P2 n]
forall a. [a] -> [a]
reverse ([P2 n] -> [P2 n]
forall a. HasCallStack => [a] -> [a]
tail [P2 n]
lower)
where
([P2 n]
upper, [P2 n]
lower) = [P2 n] -> ([P2 n], [P2 n])
forall n. OrderedField n => [P2 n] -> ([P2 n], [P2 n])
sortedConvexHull ([P2 n] -> [P2 n]
forall a. Ord a => [a] -> [a]
sort [P2 n]
ps)
sortedConvexHull :: OrderedField n => [P2 n] -> ([P2 n], [P2 n])
sortedConvexHull :: forall n. OrderedField n => [P2 n] -> ([P2 n], [P2 n])
sortedConvexHull [P2 n]
ps = (Bool -> [P2 n] -> [P2 n]
forall {p :: * -> *} {b}.
(Diff p ~ V2, Ord b, Affine p, Num b) =>
Bool -> [p b] -> [p b]
chain Bool
True [P2 n]
ps, Bool -> [P2 n] -> [P2 n]
forall {p :: * -> *} {b}.
(Diff p ~ V2, Ord b, Affine p, Num b) =>
Bool -> [p b] -> [p b]
chain Bool
False [P2 n]
ps)
where
chain :: Bool -> [p b] -> [p b]
chain Bool
upper (p b
p1_:p b
p2_:[p b]
rest_) =
case V2 b -> p b -> [p b] -> Either [p b] [p b]
go (p b
p2_ p b -> p b -> Diff p b
forall a. Num a => p a -> p a -> Diff p a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. p b
p1_) p b
p2_ [p b]
rest_ of
Right [p b]
l -> p b
p1_p b -> [p b] -> [p b]
forall a. a -> [a] -> [a]
:[p b]
l
Left [p b]
l -> Bool -> [p b] -> [p b]
chain Bool
upper (p b
p1_p b -> [p b] -> [p b]
forall a. a -> [a] -> [a]
:[p b]
l)
where
test :: b -> Bool
test = if Bool
upper then (b -> b -> Bool
forall a. Ord a => a -> a -> Bool
>b
0) else (b -> b -> Bool
forall a. Ord a => a -> a -> Bool
<b
0)
go :: V2 b -> p b -> [p b] -> Either [p b] [p b]
go V2 b
dir p b
p1 l :: [p b]
l@(p b
p2:[p b]
rest)
| b -> Bool
test (b -> Bool) -> b -> Bool
forall a b. (a -> b) -> a -> b
$ V2 b
dir V2 b -> V2 b -> b
forall n. Num n => V2 n -> V2 n -> n
`cross2` V2 b
Diff p b
dir' = [p b] -> Either [p b] [p b]
forall a b. a -> Either a b
Left [p b]
l
| Bool
otherwise =
case V2 b -> p b -> [p b] -> Either [p b] [p b]
go V2 b
Diff p b
dir' p b
p2 [p b]
rest of
Left [p b]
m -> V2 b -> p b -> [p b] -> Either [p b] [p b]
go V2 b
dir p b
p1 [p b]
m
Right [p b]
m -> [p b] -> Either [p b] [p b]
forall a b. b -> Either a b
Right (p b
p1p b -> [p b] -> [p b]
forall a. a -> [a] -> [a]
:[p b]
m)
where
dir' :: Diff p b
dir' = p b
p2 p b -> p b -> Diff p b
forall a. Num a => p a -> p a -> Diff p a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. p b
p1
go V2 b
_ p b
p1 [p b]
p = [p b] -> Either [p b] [p b]
forall a b. b -> Either a b
Right (p b
p1p b -> [p b] -> [p b]
forall a. a -> [a] -> [a]
:[p b]
p)
chain Bool
_ [p b]
l = [p b]
l